Citation: | Xiong Jianfeng, Yan Xiaojie, Jiang Puyu, Liu Jun, Cheng Yuansheng. Bending calculation of multi-span beam under arbitrary boundary conditions and engineering application thereof[J]. Chinese Journal of Ship Research, 2019, 14(4): 61-66. DOI: 10.19693/j.issn.1673-3185.01207 |
[1] |
史冬岩, 王青山, 石先杰, 等.任意边界条件下正交各向异性薄板自由振动特性分析[J].上海交通大学学报, 2014, 48(3):434-438, 444. http://d.old.wanfangdata.com.cn/Periodical/shjtdxxb201403023
Shi D Y, Wang Q S, Shi X J, et al. Free vibration analysis of orthotropic thin plates in general boundary conditions[J]. Journal of Shanghai Jiaotong University, 2014, 48(3):434-438, 444(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/shjtdxxb201403023
|
[2] |
刘开来.弹性边界下梁板结构动态特性分析[D].哈尔滨: 哈尔滨工程大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10217-1014132009.htm
Liu K L. Dynamic analysis of beam-plate structure with elastic boundary conditions[D]. Harbin: Harbin Engineering University, 2013(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10217-1014132009.htm
|
[3] |
王青山, 史冬岩, 罗祥程.任意边界条件下矩形板的面内自由振动特性[J].华南理工大学学报(自然科学版), 2015, 43(6):127-134. doi: 10.3969/j.issn.1000-565X.2015.06.020
Wang Q S, Shi D Y, Luo X C. In-plane free vibration of rectangular plates in arbitrary boundary conditions[J]. Journal of South China University of Technology (Natural Science Edition), 2015, 43(6):127-134(in Chinese). doi: 10.3969/j.issn.1000-565X.2015.06.020
|
[4] |
Xu H A, Li W L. Dynamic behavior of multi-span bridges under moving loads with focusing on the effect of the coupling conditions between spans[J]. Journal of Sound and Vibration, 2008, 312(4/5):736-753. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5fa9b67b0f0a54ad9f60871f394c4507
|
[5] |
周渤, 石先杰.连续多跨梁结构振动特性分析[J].机械设计与制造, 2017(8):43-46. doi: 10.3969/j.issn.1001-3997.2017.08.012
Zhou B, Shi X J. Vibration analysis of multi-span beam system[J]. Machinery Design & Manufacture, 2017(8):43-46(in Chinese). doi: 10.3969/j.issn.1001-3997.2017.08.012
|
[6] |
Jeon S Y, Kim Y H. A genetic approach to analyze algorithm performance based on the worst case instances[J]. Journal of Software Engineering and Applications, 2010, 3(8):767-775. doi: 10.4236/jsea.2010.38089
|
[7] |
方陆鹏, 富东慧, 王忠保, 等.连续多跨梁结构模型在力学实验教学中的开发应用[J].力学与实践, 2002, 24(3):60-62. doi: 10.3969/j.issn.1000-0879.2002.03.022
Fang L P, Fu D H, Wang Z B, et al.A continuous multiple-span beam structure model:its design and application in the experimental mechanics courses[J]. Mechanics in Engineering, 2002, 24(3):60-62(in Chinese). doi: 10.3969/j.issn.1000-0879.2002.03.022
|
[8] |
康杰豪, 贺远松, 谭开忍, 等.轮印载荷下多跨梁最危险工况分析与优化[J].中国舰船研究, 2016, 11(6):56-64. doi: 10.3969/j.issn.1673-3185.2016.06.009
Kang J H, He Y S, Tan K R, et al. Worst-case analysis and optimization of multi-span beams under multiple patch loading[J]. Chinese Journal of Ship Research, 2016, 11(6):56-64(in Chinese) doi: 10.3969/j.issn.1673-3185.2016.06.009
|
1. |
史文谱,闫家正,王浩. 铰支多跨梁稳态动变形的级数简易算法. 烟台大学学报(自然科学与工程版). 2022(01): 77-81 .
![]() | |
2. |
史文谱,闫家正,王浩. 铰支多跨梁变形计算的正弦级数法. 烟台大学学报(自然科学与工程版). 2021(04): 442-445 .
![]() |