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0 Introduction
In the context of large-scale development of

marine resources, underactuated surface vessels

(USVs) have widely been used for maritime rescue,

maritime reconnaissance, target search and tracking,

and marine environmental investigation[1]. Trajectory

tracking control of USVs has attracted much

attention for many years. Dynamics models of

USVs are highly nonlinear and strongly coupled.

Complexity and changeability of marine environ-

ment and uncertainty of ship modeling increase the

difficulty of controller design. In addition, under-

actuation of USVs places higher requirements on

controller design [2].

In the face of complex marine environment,

whether USVs are equipped with fast and accurate

tracking performance greatly affects their accuracy

in carrying out maritime tasks. Based on the

assumption of accurate dynamics model of ships,

Wang et al. [3] realized the asymptotic convergence

of USV tracking errors. In fact, due to complex

hydrodynamic moments and wind effects, ship

models are highly nonlinear. Thus, it is difficult to

obtain accurate model information. Considering

uncertainty of ship modeling and disturbances from

external environment, References [4-8] maintained

uniform ultimate boundedness of tracking errors.

Although convergence rates of tracking errors and

size of residual sets can be adjusted, it is impossible

to determine accuracy and convergence rates of

tracking errors in advance. References [9-11]

controlled tracking errors to fall into a pre-selected

range at a specified rate, further improving the
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transient- and steady-state tracking accuracy of

ships. However, due to slow convergence of an

exponential performance function, it is impossible

to guarantee that tracking errors can converge to

desired accuracy within a preset time. In fact, high

tracking accuracy needs to be achieved within a

predefined time. By introducing a barrier Lyapunov

function (BLF), References [12-13] ensured that

tracking errors of USVs satisfied preset accuracy;

however, system errors were asymptotically conver-

gent. By introducing tan-type and log-type barrier

Lyapunov functions (TBLF), References [14-16]

solved error constraints, and proposed a finite-time

stability control strategy. However, finite-time

stability is affected by initial states. Zhang et al. [17]

further considered fixed-time stability of under-

actuated ship control systems based on a log-type

BLF. However, fixed-time stability is too

conservative. Moreover, what cannot be ignored is

that log-type BLFs is restricted functionally while

tan-type one complicates controller design [18]. In

actual applications, motion of USVs is often

restrained by output saturation of actuators. Thus, in

the case of actuator output saturation, how to

realize fast and accurate tracking of USVs is a

problem worth studying. References [19-20] further

considered output saturation of actuators while

ensuring transient- and steady-state tracking

accuracy of USVs.

It is difficult to obtain accurate USV model

information by hydrodynamics. In view of this

problem, to approximate nonlinear damping terms,

Zhang et al. [21] reconstructed uncertainty terms of

dynamic models of ships by using a radial-basis-

function neural network, realizing finite-time

tracking control of underactuated ships. To estimate

external environmental disturbances, References

[22-24] designed a disturbance observer. In

References [25-26], an adaptive neural network was

used to approximate unknown nonlinear damping

terms and external environmental disturbances.

However, in neural-network-based compensation

strategies, many parameters for estimation and

identification are updated online, which greatly

increases computational costs of control systems. In

Reference [27], a self-structuring fuzzy neural

network was introduced to compensate for unknown

dynamics of ships. This method effectively reduces

calculation burden of control systems by generating

or pruning fuzzy rules online through structural

learning criteria. However, self-structuring fuzzy

neural networks require the construction of

complex fuzzy rules. Radial-basis-function neural

networks (RBFNNs) are characterized by

approximation of uncertain dynamics. With a fixed

network structure, a conventional RBFNN can

hardly deal with complex unknown time-varying

dynamics effectively, and excessive neurons

increase computational burden of control systems.

Therefore, the combination of self-structuring

criteria and RBF is worthy of further discussion.

Based on the above discussion, in view of

trajectory tracking control of USVs, this paper

proposed a predefined-time trajectory tracking

control method based on a self-structuring neural

network under the influence of model uncertainties

and unknown time-varying disturbances. Different

from an exponential decay performance function, a

performance function with arbitrarily predefined

time convergence was introduced to provide a

predefined constraint specification for error

tracking. In addition, a BLF was used as the

boundary function of predefined constraints to meet

defined tracking accuracy. Dynamic surface control

was employed in the control design to avoid

"computational explosion" caused by the derivation

of virtual control laws [28]. On this basis, an adaptive

predefined time filter was proposed. Moreover, in

view of input saturation of USVs, a self-structuring

neural network (SSNN) was adopted to approximate

uncertainties of ship models, time-varying

disturbances of external environment, and influence

of input saturation. Number of neurons can be

adjusted online to optimize the structure of the

neural network to reduce computational burden of

the system. In view of trajectory tracking control of

USVs, this paper proposed a predefined-time

stabilization method to ensure stability and uniform

boundedness of the closed-loop control system

within a predefined time. Predefined-time stability

was analyzed by constructing a Lyapunov function.

Simulation tests were carried out based on a desired

trajectory to verify effectiveness and tracking effect

of the control method.

1 Preliminary knowledge and
problem description

1.1 Preliminary knowledge

Lemma 1: Consider a nonlinear system

, where x0 is a system state and d is an uncertain

term. Define a continuous positive definite function
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V(x0) and design parameters 0 < γ < 1, Tc > 0 and

, which satisfy the following condition [29]:

(1)

Then, the trajectory of is actually

predefined-time stable, and the convergence region

is given by Eq. (2).

(2)

where Tc' is the establishment time, satisfying

, and Tmax is the upper limit.

Lemma 2: For any defined k > 0, h ≥ 0, and y >

0, the following inequality [30] is satisfied:

(3)

For k > 1, h > 0, and y ≤ h, the following

condition is satisfied:

(4)

Lemma 3: For any , there is the following

inequality [31]:

(5)

Lemma 4: For any ℓ ∈R+ and X ∈ R, the

following inequality holds [32]:

(6)

where κ = 0.278 5, satisfying κ = e-(κ + 1).

1.2 SSNN

According to relevant research [33-34], in RBFNNs,

more neurons will lead to better approximation to

unknown nonlinear functions. Noteworthily, not all

neurons are effective. Ineffective neurons not only

fail to improve approximation performance but also

increase computational costs of control systems.

Different from RBFNNs, SSNNs can adjust number

of neurons online. By judging effectiveness of

neurons, SSNNs increase or delete neurons

independently, thus effectively reducing computa-

tional burden of systems. Moreover, they can

achieve good approximation performance. The

approximation function of an SSNN is given by:

(7)

(8)

where x represents the input of the SSNN; ε(x)is an

approximation error; W∈R is an ideal weight;

number of SSNN neurons is N > 1; is the

estimation of W; S(x) = [S1(x), S2(x), ..., SN(x)]T is a

basis function vector; Si(x) is a Gaussian function,

expressed as

(9)

where bi is breadth of the Gaussian basis function;

ci is the central vector of the Gaussian basis

function.

Hypothesis 1: The ideal weight of the SSNN is

bounded, with ||W|| ≤W*, where W* is a positive

constant. ε(x) is an approximation error, satisfying

, where is a positive constant.

Define a neuron with the best activation effect as

, the split threshold of the SSNN as

, and the decay threshold of the SSNN as

, with . The neuron-splitting strategy

first judges whether the neuron with the best

activation effect exceeds the preset threshold. If it is

less than the split threshold (i.e., SM< ), the neuron

fails to reach the ideal activation effect, and then

the neuron-splitting strategy is carried out to obtain

a better approximation effect. The newly split

neuron is represented by Snew, and parameters of the

new neuron are as follows:

(10)

where cnew is a central vector of the Gaussian basis

function of the new neuron; bnew is breadth of the

Gaussian basis function of the new neuron; xM, cM

and bM are parameters of the best activation; Wnew is

the initial value of the weight of the new neuron.

The neuron decay parameter is defined as In, with

an initial value of 1. The decay threshold

functions to determine whether to implement the

neuron-decaying strategy or not. In observes the

following rule:

(11)

where Λ is a decay coefficient; pd is a self-defining

value; if the neuron-decaying strategy will

be triggered to delete the n-th neuron.

Fig. 1 illustrates the flowchart of the SSNN

algorithm. The function is the approximation of

the unknown function . In the

case of a more complex unknown nonlinear

function, it is necessary to add more effective

HUANG X Y, et al. Predefined time tracking control of underactuated surface vessel with input saturation 3
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neurons and delete ineffective ones. By increasing

and decreasing , we can add effective neurons

to achieve a better approximation effect, without

bringing excessive computational cost to the control

system. In addition, we can decrease and increase

to delete more ineffective neurons without

affecting the approximation effect, so as to reduce

computational cost of the control system.

Fig. 1 SSNN algorithm flowchart

Calculate output
of neural networkInput

Calculate
reference
indexes

If

If

Split
neurons

Decay
neurons

Output

1.3 Mathematical model of USV

According to the mathematical model of a USV,

strong coupling caused by non-diagonal terms in

the mass inertial matrix is solved by coordinate

transformation. Kinematics and dynamics models

of the USV are as follows [35]:

(12)

where

where refers to the position and yaw

angle of the USV; specifically, (x,y) are the position

coordinates and is the yaw angle; is a

rotation matrix between geodetic and hull-fixed

coordinate systems; is a velocity vector,

with u, υ and r being forward velocity, lateral

velocity, and yaw angular velocity, respectively; M

is a mass inertial matrix; C(v) is a centripetal matrix

of Coriolis force. D(v) is a matrix of hydrodynamic

damping coefficients . , ,

, ,

, ,

, ,

, , where m0 is mass of the USV. , , , and

are additional mass; xg is the deviation between

the center of gravity of the USV and the origin of

the hull-fixed coordinate system; Iz is the moment

of inertia in the yaw direction; X(· ), Y(· ) and N(· )

are linear and quadratic hydrodynamic damping

coefficients of forward, lateral, and yawing

movements; is a vector of external

time-varying disturbances; is a

control input under input saturation. Actuator

output saturation is defined as follows:

(13)

where is a control instruction in the case

of no input saturation; and are upper and lower

bounds of input saturation, respectively.

Since the saturation model Eq. (13) cannot be

directly used for backstepping design, a smooth

model is defined to describe the asymmetrically

saturated nonlinear model [36].

(14)

where

where sign(·) is a standard symbolic function; erf(·)

is a Gaussian error function. Symmetric and

asymmetric saturation models can be obtained by

adjusting and . In the case of , a

symmetric saturation model can be obtained. In the

case of , an asymmetric saturation model

can be obtained. Fig. 2 shows that the saturation

model Eq. (13) is of smooth saturation limits, where

=8, =-4, and the input signal is =25sin(1.5t) N.

With the further consideration about the error

of input saturation, where τ is a control

input in the case of no input saturation, the

dynamics model can be rewritten as

(15)

where ; .

Under the influence of the mass inertial matrix

4
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M, lateral and yawing velocity will affect control

input jointly, which increases the difficulty of

controller design. For this reason, coordinate

transformation is introduced to solve USV coupling.

Coordinate transformation of a USV is described as

follows [34]:

(16)

where .

With Eq. (16), the mathematical model of USV

can be transformed into

(17)

where

(18)

where f = [f1, f2, f3]T is the uncertainty term of the

USV model. .

Hypothesis 2: The external disturbance d=[du, dv,

dr]T is bounded, , i = u, v, r.

Hypothesis 3: The desired position

and are bounded.

In Fig. 3, (x, y) refers to the actual position of the

USV; (xd, yd) refers to the desired position; is the

actual heading angle of the USV; is the desired

heading angle; is the heading-angle error.

The tracking error after coordinate transforma-

tion is defined as follows:

(19)

where is the position tracking error after

coordinate transformation; is the line-of-sight

(LOS) guidance range. The desired heading angle

is defined as follows [18]:

(20)

where

(21)

undefined,

(22)

2 Controller design

2.1 Predefined-time state constraint con-

troller

Most of the performance constraints are solved

by exponential decay performance functions to

ensure that tracking errors are limited to a preset

range. However, such functions can only guarantee

that tracking errors converge to a preset range in

infinite time, with no guarantee to achieve preset

tracking performance in predefined time. For better

tracking performance, a predefined-time performance

function is introduced to ensure that tracking errors

can reach desired tracking accuracy within a

predefined time. The predefined-time performance

function is defined as follows [37]:

HUANG X Y, et al. Predefined time tracking control of underactuated surface vessel with input saturation

Eq.(13)Unrestricted Eq.(14)

Fig. 2 Saturation functions

Desired trajectory

Fig. 3 Schematic diagram of USV trajectory tracking
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(23)

where ; Th is freely set time.

Therefore, tracking errors satisfy the following

conditions:

(24)

To obtain better tracking performance, we

constructed the following time-varying BLF [38]:

(25)

The following Lyapunov function is considered:

(26)

Then the first derivative of V1 is given by

(27)

The designed virtual control law is given by

(28)

where , , , are positive constants, ,

and design parameters , ,

.

To avoid "computational explosion" in taking

derivations of virtual control signals, a conventional

first-order filter is usually used, that is,

，where is filter gain; is an input signal of

the filter; is an input signal after filtering .

In this paper, an adaptive predefined-time filter is

proposed to avoid "differential explosion", and an

adaptive law is used to estimate unknown upper

bounds of virtual control input derivatives.

Hypothesis 4: The derivative of an input signal of

the adaptive predefined-time filter is

continuous, and , is an unknown positive

constant.

The adaptive predefined-time filter is given by

(29)

(30)

where

where Tfι and Tγι are preset time.

Velocity and filtering errors are defined as

follows:

(31)

The following Lyapunov function is constructed:

(32)

The derivative of Eq. (32) with respect to time is

given by

(33)

According to Lemma 2, the following

inequalities hold:

6
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(34)

By substituting Eq. (30) into Eq. (33), based on

Eq. (34), according to Lemma 4, we can transform

Eq. (33) into

(35)

where .

(36)

According to Lemma 1, all the filtered signals of

the closed-loop control system will converge to a

neighborhood within the predefined time (

) :

(37)

2.2 Predefined-time SSNN

To solve the influence of unknown continuous

nonlinear factors and external environmental

disturbances on performance of the controller, this

paper introduced an SSNN-based approximation

strategy.

(38)

where , are input signals of

the neural network; S1(Z1) and S2(Z2) are central

functions of the adaptive law of the neural network;

is an ideal weight matrix;

is an approximation error of the neural network.

The approximation function is designed as

(39)

The error matrix of weight is given by

(40)

The estimated error is given by

(41)

where is the upper bound of the estimated

approximation error of the neural network. Define

.

Take derivations of ue and re in Eq. (31):

(42)

For the unknown dynamics

and , including input

saturation-induced errors, unknown continuous

nonlinear factors, and external environmental

disturbances, an SSNN is used for approximation.

Therefore, the actual control law designed is

shown in Eq. (43).

ζ/
(43)

The adaptive law is designed as

(44)

(45)

where Γ1, Γ2, and are adaptive law gains.

3 Analysis of predefined-time
stability

Consider the following Lyapunov function:

(46)

The derivative of V3 is given by

HUANG X Y, et al. Predefined time tracking control of underactuated surface vessel with input saturation 7
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According to Lemma 4, based on Eq. (41), Eq. (47) can be transformed into

(48)

Substitute Eqs. (44) and (45) into Eq. (48):

(49)

According to Lemma 2, the following

inequalities are satisfied:

(50)

According to Young's inequality, the following

inequalities hold:

(51)

Then, Eq. (49) can be transformed into

8
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(52)

Both sides of Eq. (52) are integrated

simultaneously and the following inequality is met:

(53)

V3 is obviously bounded, which means that

tracking errors are uniformly bounded. Therefore,

we further assume that there is always a positive

constant satisfying the following inequality:

， .

(54)

In fact, if there is a > 0 satisfying the following

inequality

(55)

Eq. (54) realizes asymptotic convergence of the

closed- loop system. Further considering the prede-

fined-time convergence of the closed-loop system,

based on Eq. (55), we can rewrite Eq. (54) as

(56)

HUANG X Y, et al. Predefined time tracking control of underactuated surface vessel with input saturation 9
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where

(57)

According to Lemma 1, in the control system, all

signals converge to a regional set near the origin

within a predefined time.

The convergence time satisfies

(58)

4 Simulation results

A desired circular trajectory was given by

(59)

Under the circular trajectory, four initial states

were selected as follows:

State 1: η0 = [75, 28, 0]T, v0 = [0, 0, 0]T.

State 2: η0 = [77, 27, 0.2]T, v0 = [0.01, 0, 0]T.

State 3: η0 = [76, 33, 0.1]T, v0 = [0.02, -0.01, 0]T.

State 4: η0 = [83, 34, -0.8]T, v0 = [0.02, 0, 0.01]T.

Asymmetric input saturation was set to

External time-varying environment disturbances

were given by

(60)

Table 1 lists dynamics model parameters of the

selected USV in the simulation, and control

parameters set in this paper are shown in Table 2.

Predefined-time parameters are as follows: = 0.35,

Tι = 6 s,Tcι = 6 s,Twι = 6 s,Thι = 6 s, Tfι = 6 s, Tγι = 6 s,

ι = u, r.

Parameters of the SSNN were as follows: Γ1 =

250, Γ2 = 250, and initial values of the estimations

of SSNN weight and were . The

initial number of neurons was N = 41. Centers of

the SSNN's Gaussian function were uniformly

distributed within [-8, 8], with a breadth of 0.85.

The split threshold was =0.8 and the decay

threshold was =0.1, and pd= 0.3. For performance

comparison between SSNN and RBFNNs,

RBFNNs adopted the same parameters as the

SSNN did.

Fig. 4 illustrates trajectory tracking effect in the

case of different initial positions of the USV.

Figs. 5-6 illustrate corresponding tracking errors.

According to Figs. 4-6, despite different initial

positions, the designed control system is capable of

convergence within predefined time, and the

predefined-time performance function can ensure

that tracking errors fall into a preset range within a

specified time (Th = 5 s), thus ensuring transient-

and steady-state tracking performance.

Fig. 7 illustrates the approximation effect of the

SSNN. F1 and F2 are uncertainties in the surge and

yaw directions respectively, while and are

approximated outputs of the SSNN. It can be seen

that the SSNN has a good capacity of approxima-

tion. Fig. 8 illustrates changes in number of SSNN

neurons. The initial number of neurons is 41, and

the final number of neurons stabilizes at 27 and 26,

respectively. Fig. 9 illustrates 2-norm of SSNN

weight estimations. From the figure, the 2-norm of

SSNN weight estimations converges at about 3 s,

and thus the SSNN is effective. Based on Figs. 7-9,

the SSNN has a good approximation effect.

Number of SSNN neurons can be adjusted online,

decreasing by 14 and 15 respectively. This reduces

Table 1 Dynamic model parameters of USV

Parameter Value Parameter Value Parameter Value Parameter Value

10
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computational cost of the system effectively.

The initial number of SSNN neurons was set to

41 and the final number of SSNN neurons was 27

and 26, respectively. To demonstrate superiority of

the SSNN, we selected RBFNNs with 41 and 27

neurons for comparison. The RBFNNs and the

SSNN had the same gains and centers and breadths

of Gaussian functions. Fig. 10 illustrates control

inputs of different neural networks. The figure

shows that control inputs under the SSNN show a

stable and smooth curve within 0-6 s, while those

under the RBFNNs vary greatly, with sudden

changes. Fig. 11 compares the RBFNNs and SSNN

in terms of approximation errors. Compared with

the RBFNNs containing 41 and 27 neurons, the

SSNN yields smaller approximation errors. From

Table 2 Control parameters

Parameter Value Parameter Value

Fig. 4 Trajectory tracking for different initial positions

State 1
State 2
State 3

State 4
Tracking

trajectory

Fig. 5 Tracking error of Ē

State 1
State 2
State 3
State 4
Th
Constraint boundary

Fig. 6 Tracking error of

State 1
State 2
State 3
State 4
Th
Constraint boundary

Fig. 7 Approximation of the self-structuring neural network

Fig. 8 Number of neurons

Fig. 9 The 2-norm of the SSNNs weight estimation

(a) Approximation effect

(b) Approximation effect

N
um

be
r o

f n
eu

ro
ns

Neuron-F1

Neuron-F2

(a) Weight estimation

(b) Weight estimation

HUANG X Y, et al. Predefined time tracking control of underactuated surface vessel with input saturation 11
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the analysis of approximation effect, SSNN yields a

better approximation effect. Moreover, number of

SSNN neurons can be adjusted online, which can

reduce the computational burden of the closed-loop

control system effectively.

Saturation
constraint

Saturation
constraint

(a) Control input

(b) Control input

Fig. 10 Control inputs for different neural networks

(a) Approximation error

(b) Approximation error

Fig. 11 Approximate error comparison between RBFNNs and

SSNNs

5 Conclusions

This paper proposed a scheme for SSNN-based

predefined-time trajectory tracking control. On this

basis, it solved such problems of USVs as unknown

time-varying disturbances, model uncertainty, and

input saturation. As a result, tracking accuracy of

the closed-loop control system and convergence

rates of system errors are improved. An SSNN was

adopted to compensate for unknown dynamics,

external time-varying environmental disturbances,

and effects of input saturation. Comparison with

RBFNNs further verified superiority of the SSNN-

based scheme. By using the Lyapunov theory, this

paper proved that all signals of the USV trajectory

tracking control system were bounded, and that all

system errors converged to a small range within a

predefined time. Next, we will study how to reduce

communication burden of the control system.
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基于输入饱和的欠驱动水面舰艇
预定义时间跟踪控制

黄秀颖 1，刘海涛*1，2，田雪虹 1，2

1 广东海洋大学 机械工程学院，广东 湛江 524088

2 广东海洋大学深圳研究院，广东 深圳 518120

摘 要：［目的目的］为解决欠驱动水面舰艇（USV）在模型不确定性、强耦合特性和控制器输入饱和情况下的轨迹

跟踪问题，提出基于输入饱和的 USV 预定义时间跟踪控制方法。［方法方法］针对 USV 模型具有非零对角项和强

耦合特性问题，引入坐标变换，将系统模型转变为斜对角形式；将预定义时间性能函数与障碍 Lyapunov 函数

（BLF）结合，保证瞬态和稳态的跟踪性能；利用自组织神经网络（SSNN）降低未知外部环境扰动和复杂的连续

未知非线性项以及输入饱和产生的影响，以保证控制系统的跟踪精度，并且在线调整优化 SSNN 的神经元数

目，减少控制系统的计算负担。［结果结果］基于 Lyapunov 稳定性理论，证明了闭环系统在预定义时间内是有界稳

定的，跟踪误差始终保持在约束范围内。［结论结论］仿真结果表明，所提控制策略是有效的，其具有良好的跟踪性能。

关键词：欠驱动水面舰艇；预定义时间性能函数；障碍 Lyapunov 函数；自组织神经网络；输入饱和；预定义时

间控制
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