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Abstract: [Objectives] To solve the trajectory tracking problem of underactuated surface vessels (USVs) under the
condition of model uncertainty, strong coupling characteristics and controller input saturation, this study proposes a
predefined time tracking control method for USVs based on input saturation. [Methods] Due to the non-zero
diagonal terms and strong coupling characteristics of the USV model, coordinate transformation is introduced to
transform the system model into a diagonal form. To obtain the predetermined tracking performance, the predefined
time performance function is combined with the barrier Lyapunov function (BLF) to ensure transient and stable
tracking performance. Self-structuring neural networks (SSNN) are used to approximate unknown external
disturbances and complex continuous unknown nonlinear terms, and deal with the impact of actuator saturation, thus
ensuring the tracking performance of the control system. Moreover, the number of SSNN neurons can be adjusted
online, reducing the computational burden on the control system. [Results] Based on the Lyapunov stability theory, it
is proven that the closed-loop system is bounded stable in a predefined time, and the tracking error is always within
the constraint range. [Conclusions] The simulation results show that the proposed control strategy is effective and
has good tracking performance.
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tracking performance greatly affects their accuracy

0 Introduction in carrying out maritime tasks. Based on the

In the context of large-scale development of
marine resources, underactuated surface vessels
(USVs) have widely been used for maritime rescue,
maritime reconnaissance, target search and tracking,
and marine environmental investigation[l. Trajectory
tracking control of USVs has attracted much
attention for many years. Dynamics models of
USVs are highly nonlinear and strongly coupled.
Complexity and changeability of marine environ-
ment and uncertainty of ship modeling increase the
difficulty of controller design. In addition, under-
actuation of USVs places higher requirements on
controller design 1,

In the face of complex marine environment,
whether USVs are equipped with fast and accurate
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assumption of accurate dynamics model of ships,
Wang et al. Plrealized the asymptotic convergence
of USV tracking errors. In fact, due to complex
hydrodynamic moments and wind effects, ship
models are highly nonlinear. Thus, it is difficult to
obtain accurate model information. Considering
uncertainty of ship modeling and disturbances from
external environment, References [4-8] maintained
uniform ultimate boundedness of tracking errors.
Although convergence rates of tracking errors and
size of residual sets can be adjusted, it is impossible
to determine accuracy and convergence rates of
tracking errors in advance. References [9-11]
controlled tracking errors to fall into a pre-selected
range at a specified rate, further improving the
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transient- and steady-state tracking accuracy of
ships. However, due to slow convergence of an
exponential performance function, it is impossible
to guarantee that tracking errors can converge to
desired accuracy within a preset time. In fact, high
tracking accuracy needs to be achieved within a
predefined time. By introducing a barrier Lyapunov
function (BLF), References [12-13] ensured that
tracking errors of USVs satisfied preset accuracy;
however, system errors were asymptotically conver-
gent. By introducing tan-type and log-type barrier
Lyapunov functions (TBLF), References [14-16]
solved error constraints, and proposed a finite-time
stability control strategy. However, finite-time
stability is affected by initial states. Zhang et al. ]
further considered fixed-time stability of under-
actuated ship control systems based on a log-type
BLF. However, fixed-time stability is too
conservative. Moreover, what cannot be ignored is
that log-type BLFs is restricted functionally while
tan-type one complicates controller design 8. In
actual applications, motion of USVs is often
restrained by output saturation of actuators. Thus, in
the case of actuator output saturation, how to
realize fast and accurate tracking of USVs is a
problem worth studying. References [19-20] further
considered output saturation of actuators while
ensuring transient- and steady-state tracking
accuracy of USVs.

It is difficult to obtain accurate USV model
information by hydrodynamics. In view of this
problem, to approximate nonlinear damping terms,
Zhang et al. Preconstructed uncertainty terms of
dynamic models of ships by using a radial-basis-
function neural network, realizing finite-time
tracking control of underactuated ships. To estimate
external environmental disturbances, References
[22-24] designed a disturbance observer. In
References [25-26], an adaptive neural network was
used to approximate unknown nonlinear damping
terms and external environmental disturbances.
However, in neural-network-based compensation
strategies, many parameters for estimation and
identification are updated online, which greatly
increases computational costs of control systems. In
Reference [27], a self-structuring fuzzy neural
network was introduced to compensate for unknown
dynamics of ships. This method effectively reduces
calculation burden of control systems by generating
or pruning fuzzy rules online through structural
learning criteria.. However, self-structuring fuzzy

neural networks require the construction of
complex fuzzy rules. Radial-basis-function neural
networks (RBFNNs) are characterized by
approximation of uncertain dynamics. With a fixed
network structure, a conventional RBFNN can
hardly deal with complex unknown time-varying
dynamics effectively, and excessive neurons
increase computational burden of control systems.
Therefore, the combination of self-structuring
criteria and RBF is worthy of further discussion.

Based on the above discussion, in view of
trajectory tracking control of USVs, this paper
proposed a predefined-time trajectory tracking
control method based on a self-structuring neural
network under the influence of model uncertainties
and unknown time-varying disturbances. Different
from an exponential decay performance function, a
performance function with arbitrarily predefined
time convergence was introduced to provide a
predefined constraint specification for error
tracking. In addition, a BLF was used as the
boundary function of predefined constraints to meet
defined tracking accuracy. Dynamic surface control
was employed in the control design to avoid
"computational explosion™ caused by the derivation
of virtual control laws [?81, On this basis, an adaptive
predefined time filter was proposed. Moreover, in
view of input saturation of USVs, a self-structuring
neural network (SSNN) was adopted to approximate
uncertainties of ship models, time-varying
disturbances of external environment, and influence
of input saturation. Number of neurons can be
adjusted online to optimize the structure of the
neural network to reduce computational burden of
the system. In view of trajectory tracking control of
USVs, this paper proposed a predefined-time
stabilization method to ensure stability and uniform
boundedness of the closed-loop control system
within a predefined time. Predefined-time stability
was analyzed by constructing a Lyapunov function.
Simulation tests were carried out based on a desired
trajectory to verify effectiveness and tracking effect
of the control method.

1  Preliminary knowledge and
problem description

1.1 Preliminary knowledge

Lemma 1: Consider a nonlinear system x, = f (2, xo,
d), where X, is a system state and d is an uncertain
term. Define a continuous positive definite function
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V(X,) and design parameters 0 <y <1, T.>0and
0 < < o0, Which satisfy the following condition 2%
’ T 1—y/2 +y/2
V<—ﬁ(v VIR 1 1)
Then, the trajectory of X, = f(t,x,,d) is actually
predefined-time stable, and the convergence region
is given by Eq. (2).

2 2
2vT N2y (29T A\ 2+
{.imxowm{( ) (2) }} o
=T T T

where T, is the establishment time, satisfying
T! < T = V2T, and T, is the upper limit.

Lemma 2: For any defined k >0, h= 10, and y >
0, the following inequality B% is satisfied:

! +k +
W=y < = (=) (3)

For k > 1, h > 0, and y < h, the following
condition is satisfied:
(h=y) <y* =it 4)
Lemma 3: For any J e R, there is the following
inequality B

m m 23 (1+2)/2
Z|3,|HP>(Z|5|] , 0<pxl1

i=1 =1 (5)

m r
s> {3l

i=1 i=1

K

g, p>1

Lemma 4: For any ¢ eR* and X e R, the
following inequality holds 2
X
O<|X|—Xtanh(?)<1<{7 (6)

where x = 0.278 5, satisfying x = e+ 1),

1.2 SSNN

According to relevant research 2334 in RBFNNs,
more neurons will lead to better approximation to
unknown nonlinear functions. Noteworthily, not all
neurons are effective. Ineffective neurons not only
fail to improve approximation performance but also
increase computational costs of control systems.
Different from RBFNNs, SSNNs can adjust number
of neurons online. By judging effectiveness of
neurons, SSNNs increase or delete neurons
independently, thus effectively reducing computa-
tional burden of systems. Moreover, they can
achieve good approximation performance. The
approximation function of an SSNN is given by:

fx)=WSx +s(x) @)
W =arg min{sup|f(x)—WTS(x)|} (8)

where x represents the input of the SSNN; g(x)is an

approximation error; WeR is an ideal weight;
number of SSNN neurons is N > 1; W is the
estimation of W; S(x) = [S;(X), S,(X), ..., Sy(X)]" is a
basis function vector; S;(x) is a Gaussian function,
expressed as

lx—el?
bl

i

S,(x):exp( ),i:1,2,...,N 9)

where b; is breadth of the Gaussian basis function;
¢; is the central vector of the Gaussian basis
function.

Hypothesis 1: The ideal weight of the SSNN is
bounded, with ||W| <W", where W"is a positive
constant. ¢(x) is an approximation error, satisfying
£(x) < &, where £ is a positive constant.

Define a neuron with the best activation effect as
Sw=maxSi the split threshold of the SSNN as
Y, €(0,1), and the decay threshold of the SSNN as
Y4 €(0,1), with T, > 74. The neuron-splitting strategy
first judges whether the neuron with the best
activation effect exceeds the preset threshold. If it is
less than the split threshold (i.e., Sy, <7%), the neuron
fails to reach the ideal activation effect, and then
the neuron-splitting strategy is carried out to obtain
a better approximation effect. The newly split
neuron is represented by S,.,, and parameters of the
new neuron are as follows:

c _ XM + (4]

new — )
bncw = bM (10)
‘/Vuew = O

where ¢, is a central vector of the Gaussian basis
function of the new neuron; b, is breadth of the
Gaussian basis function of the new neuron; Xy, Cy
and b, are parameters of the best activation; W,,,, is
the initial value of the weight of the new neuron.

The neuron decay parameter is defined as I,, with
an initial value of 1. The decay threshold 7,
functions to determine whether to implement the
neuron-decaying strategy or not. I, observes the
following rule:

AL, S < pa
n:{ ,i=1,2,....N (11)
L, §;>pg
where A is a decay coefficient; p, is a self-defining
value; if 7, <7y the neuron-decaying strategy will
be triggered to delete the n-th neuron.

Fig. 1 illustrates the flowchart of the SSNN
algorithm. The function £ is the approximation of
the unknown function f(x) = WIS(x)+&(x). In the
case of a more complex unknown nonlinear
function, it _is necessary to add more effective
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neurons and delete ineffective ones. By increasing
¥, and decreasing 7, we can add effective neurons
to achieve a better approximation effect, without
bringing excessive computational cost to the control

system. In addition, we can decrease 7 and increase
Ty to delete more ineffective neurons without
affecting the approximation effect, so as to reduce
computational cost of the control system.

N
Su= maXJ—M{ If Sy YJ

Split
neurons

Calculate output
of neural network

Calculate
reference
indexes

Decay
neurons

Fig.1 SSNN algorithm flowchart

1.3 Mathematical model of USV

According to the mathematical model of a USV,
strong coupling caused by non-diagonal terms in
the mass inertial matrix is solved by coordinate
transformation. Kinematics and dynamics models
of the USV are as follows [

n=JWyv

My=-C®v-DW)v+T14+T7. (12)

cos(y) —sin(y) 0O

Jw) =1 sin(¥) cos(y) O

0 0 1

where
myy 0 0
M= 0 my mn

0 Hlyy  Hlizz

0 0 Cg;
Cwvy=| 0 0 Cxn
Cy Cin 0
d, 0 0
Dwv)=| 0 dy ds
0 dy dy

where 5= [x,v,u]" refers to the position and yaw
angle of the USV; specifically, (x,y) are the position
coordinates and ¢ is the yaw angle; J(¥) is a
rotation matrix between geodetic and hull-fixed
coordinate systems; v = [i,v,r]" is a velocity vector,
with u, » and r being forward velocity, lateral
velocity, and yaw angular velocity, respectively; M
is a mass inertial matrix; C(v) is a centripetal matrix
of Coriolis force. D(v) is a matrix of hydrodynamic
damping coefficients .my, =my—X,, my=my—-Y,,
Y, mp=01-N,, d,=-X,— Xu.lul—
Xt , A= =Y, =Y, Ul =Y, |1| | dys = =Y,~ Yy, U] -
Yorlrl, dsa = =Ny = Ny [l = Ny |1l daz = —=N,— N [v] =
N..Irl, , where m, is mass of the USV. X,, Y, ¥;, and
N; are additional mass; X, is the deviation between
the center of gravity of the USV and the origin of
the hull-fixed coordinate system; I,is the moment
of inertia .in the yaw direction; X(:), Y(:).and N(-)

Nyy = MpX, —

are linear and quadratic hydrodynamic damping
coefficients of forward, lateral, and yawing
movements; 7y = [7q,.Ta.Te ] IS @ vector of external

time-varying disturbances; 7.=[7.,0.7,]" is a

control input under input saturation. Actuator
output saturation is defined as follows:
LT >t
Ta =37, T, <T, <7, (13)
T, 7,<T

where 7.(¢ =1, r) is a control instruction in the case
of no input saturation; 7, and 7, are upper and lower
bounds of input saturation, respectively.

Since the saturation model Eq. (13) cannot be
directly used for backstepping design, a smooth
model is defined to describe the asymmetrically
saturated nonlinear model (36,

_ - \/E
Ty = Ty X ert (—27'1\4u T, (14)
where

Tve = (T +7) 2+ (7] —7,) /2)sign(7,), t=u,r
o~ 2 - 2
elt(x) = % J() e dr

where sign(-) is a standard symbolic function; erf(-)
is a Gaussian error function. Symmetric and
asymmetric saturation models can be obtained by

adjusting 7/ and 7, . In the case of |77|=|7/], a
symmetric saturation model can be obtained. In the

TL*| *

case of 7,|, an asymmetric saturation model
can be obtained. Fig. 2 shows that the saturation
model Eq. (13) is of smooth saturation limits, where
7,=8, 7,=—4, and the input signal is Tm=25sin(1.5t) N.

With the further consideration about the error
4 =71—7, of input saturation, where 7 is a control
input in the case of no input saturation, the

dynamics model can be rewritten as
My=-Cw)v—DW)v+14+7-A4 (15)

where r = [7,,0,7,]"; 4 = [4,,0,4,]".
Under the_influence of the mass iinertial matrix
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-------- Unrestricted «---Eq.(13) —— Eq.(14)

0 5 10 15
t's

Fig. 2 Saturation functions

M, lateral and yawing velocity will affect control
input jointly, which increases the difficulty of
controller design. For this coordinate
transformation is introduced to solve USV coupling.
Coordinate transformation of a USV is described as
follows B4

reason,

X = x+ycos(y)
V=y+xsin) (16)
v=u+yr

where x = 1ty /mn.

With Eqg. (16), the mathematical model of USV

can be transformed into
ip=JW)v
! o (17)
v=f+d+1v -4

where
=[xyl v =lwor", f=1fi. A1

T =1471,0.47]", 4 =14,4,0,4,4,]", d=d,.d,.d]"
dy =&, dy = ETq, dy = E(Te, —XTa)
i = (O — yr)r + mysr —dyuy/my,
fo=(=myur —dyn(U—xr) = dyr)/my
Js = ((myymay — mi )u(@ — yr) + (my sy — (18)

M3ty YUt — (dsar + day (U — yr))my+

(st + dox(U — xr))ps) [V
where f = [f;, f,, f;]7 is the uncertainty term of the
USV model. V = myyn143 — m1p3115,.

Hypothesis 2: The external disturbance d=[d,, d,,
d,]™ is bounded, d; < dys, i = U, V, T.

Hypothesis 3: The desired position 7q¢ = [X4, yas
¥q]" and 74 are bounded.

In Fig. 3, (x, y) refers to the actual position of the
USV; (x4, Yg) refers to the desired position; ¢ is the
actual heading angle of the USV; ¥4 is the desired
heading angle; ¥. is the heading-angle error.

The tracking error after coordinate transforma-
tion is defined as follows:

Ve Desired trajectory ,

(x, )

>

0, X,

Fig. 3 Schematic diagram of USV trajectory tracking

Ve=a—y, E= JE+T )
where (%, ¥.) is the position tracking error after
coordinate transformation; £ is the line-of-sight
(LOS) guidance range. The desired heading angle
Yq is defined as follows 181

{ X=X % Ve =yg—y

W, = arctan 2(¥,, X.)
(20)
l//d = lp+‘//e
where
| | cosy siny || X
H‘[ ~siny cosy HJ @)
arctan({i), % >0
Xe
arctan({i) +m, %<0.9.20
xC
atan2(y,, X.) = arctan({i) -n, % <0,% <0 (22)
) %
+ g % =0,9.>0
- g £=0,7.<0
undefined, %=0,9.=0

2 Controller design

2.1 Predefined-time state constraint con-
troller

Most of the performance constraints are solved
by exponential decay performance functions to
ensure that tracking errors are limited to a preset
range. However, such functions can only guarantee
that tracking errors converge to a preset range in
infinite time, with no guarantee to achieve preset
tracking performance in predefined time. For better
tracking performance, a predefined-time performance
function is introduced to ensure that tracking errors
can reach desired tracking accuracy within a
predefined time. The predefined-time performance
function is defined as follows 71;
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Ty
a; = O-I(]e T + Ticos L= Th (23)
Ticos 2T,

where oy > 0. > 0 =u,r); T, is freely set time.

Therefore, tracking errors satisfy the following
conditions:
E<o,
(24)
-0, <Y. <0,

To obtain better tracking performance, we
constructed the following time-varying BLF [

v TE o .
Ll_()'g—Ez’ r_o_rz._wé ( )
The following Lyapunov function is considered:
1
7 1)
v, 2Vu SV (26)

Then the first derivative of V, is given by
Vi=V,V,+V.V, =
2E (ot +2ENE - 20,6, B N

ol—E? (02— EZ)Z
onbe (oo 20, 04)
R Ca

25

— (o} + T2 E*) (g cos(r)+
y:sin(wd) —ucos(y.)—vsin(y.))—
20,0,E) /(0 -
oW (o] + o) Wa—1) 20,0
o=y (02 =2y’
The designed virtual control law is given by

E)+

@7)

a, = | Xgco8(Ya) + yasin(yy) — vsin(e)—
k(o2 EN'E
(8 + 0 E?)

1—y T+y .

W(Vu +V, ))/COS(%) (28)

} 20,007 k(0> =y
=t <of+cr§f;z) o = o

(@ —yd'n

(o +oyyT,
where k,, k,,« ,B are positive constants, 0 <a <1,
0<p<

L=u,r.

20,0 ,E°
(ot + 0’5E_2)
(02— EY'n

V7V

1 and design parameters 0<y<1,7,>0,

To avoid "computational explosion™
derivations of virtual control signals, a conventional
first-order filter is usually used, that is,
a,, —ar, where ¢, is filter gain; a., is an input signal of
the filter; a;, is an input signal after filtering ¢=u,r.
In this paper, an adaptive predefined-time filter is
proposed to avoid "differential explosion", and an
adaptive law is used to estimate unknown upper
bounds of virtual control input derivatives.

in taking

t,él/'l =

Hypothesis 4: The derivative of an input signal of
the adaptive predefined-time filter (@, ¢t =u,r) is
continuous, and || <7¥,, ¥is an unknown positive
constant.

The adaptive predefined-time filter is given by

Toty = (6] T yE l+v> + Ty, tanh (/f )+a,m (29)

A o 2_’}/317}/ 2+)/¢1+) g
=— — — &t h
Y yTﬂ( 5 Ve T an (30)

where

(ot +a2E%)V, (0 +o22)V,
L=1U,7,0y, = ﬁsamr = ﬁ
(02— E2) (03 -v)
where T, and T, are preset time.

Velocity and filtering errors are defined as

follows:
U =g, — U, Yo =dy— T
&, =a,—ay, & =a,—ay (31)
The following Lyapunov function is constructed:
1 1 1., 1.

Vi= &+ -8+ 2y, + 27, (32)

zsu 2~l‘ 2 Ll 2
The derivative of Eq. (32) with respect to time is

given by
V “;: E ’;/ ’}i//l + T/r;r =
é:”('y” - TMI(E (ful_y +‘§_‘”|+y) + Tﬁl'}A/u taﬂh(é) +
v Eoy

T
mu))"_gl()/J ,1(_ (é‘rl_y"'érlﬂ/)"_
Y
E =~ & =~ &
Tff)/r tanh + amr + ’}/u‘}/u + ,}/z"}/r <
Eor
[Ty g1y _
61 (_Tﬁ,, (; (SM + Su + amu))) + |§u| Yu—
Egu

EF tanh( )+ y £, tanh ( & )
()u

& (—Tﬁl (g (g,“)’ +§,”V )) +1&,17,—

~<n
=
N

&y, tanh(’g—r) +%,é tanh( & ) .+
Eor Eor

- E (&7 +&2)- T, (& +e2)+

& R £ .
s (E) e o) 1)
Epu Eor

Euamu - {i:ramr (33)

According to Lemma 2, the following

inequalities hold:
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(34)

By substituting Eq. (30) into Eq. (33), based on
Eq. (34), according to Lemma 4, we can transform
Eqg. (33) into

= EEHEE VY +T,Y, <
“ (

2 2
_y%((éj)] l+ l Z)_

14
2

- - T - 1+Z
D)) ) -
yTyu )/Tyi' )/Tyt'

fr L Eramu + kl/Tl)/II + kﬂl)/r =
n o -1 +2
—E(Vf "+V )+C1 (35)

where Ti;=T, =T, >0, t=ur, k; =k, =0.278 5,

}/

P & )|+5 T ay-d
yT Ya +yT ) 2+

yu r

IS

-
) = '}/T ()/Ll)

yu
b
yT.

yr

Y
(73)1+ - .guamu - framr + k;/Tl 7u + k/ZTZ?r (36)

According to Lemma 1, all the filtered signals of
the closed-loop control system will converge to a
neighborhood within the predefined time (7% =

V2Ty) :

2 2
N 2—
{limxlvm{(wl) () }} an
=T, T T

2.2 Predefined-time SSNN

To solve the influence of unknown continuous
nonlinear factors and
disturbances on performance of the controller, this
paper introduced an SSNN-based approximation
strategy.

external environmental

Fi=W'S(Z)+&(Z)
(38)

Fy=WySoZ:)+6,(Z,)
where Z, =[u,a,]",Z, = [r.a,]" are input signals of
the neural network; S,(Z;) and S,(Z,) are central
functions of the adaptive law of the neural network;
W, = arg min||f; - W.S/|| is an ideal weight matrix; &
is an approximation error of the neural network.

The approximation function is designed as
F,=W'S(Z) (39)
The error matrix of weight is given by

W,=W,-W, (40)
The estimated error is given by
B, =h,—h, (41)

where #;
approximation error of the neural network. Define
h,=max{lgl}, i=1,2.

Take derivations of u, and r, in Eq. (31):

is the upper bound of the estimated

U, =ap, —u=

a?l - (f + ,(MTdM - ,ZMAM) _‘fu‘ru
oo (42)
Ve =04 —T =

ay — (3 + LT —xTa —4,) — &7,
For the unknown dynamics F, = fi +,Taw — 4.

and F, = fs+ (T, —xTa)— {4, , including input
saturation-induced errors, unknown continuous
nonlinear factors, and external environmental

disturbances, an SSNN is used for approximation.
Therefore, the actual control law designed is
shown in Eq. (43).

7+ 2 E
. (a’u +0,E ) V,cosyr.
T,=|dg +

(2- B2} ~WisiZo+

+k,u.

i tanh(l_l—le) + y;m (u‘ U +u‘”)) [

( (@, +a )V,
T, =\det ———5—
(@2 -v2)

2 Te T = L+
h:tanh(£)+ v ( 7ty V)) /¢

The adaptive law is designed as

(43)
+hkre — WS, (Zy)+

% 2T .
W, =1, (S,<z])ue + —”W])

. y ;:LI (44)
Wz =-I; (Sz(Zz)"c + —Wz)

j =

" 2— al- 2+ alt
'Y’l(uetanh(&)—( y)nhi y ( y)nhi 7)
A YT YT

R (45)
hz =

¥ 2_ a2l=y 2 ~l+
Tz(r tanh( ) Q-yngr 2rymg V)
12 ‘}/Thr ’}/Thr

where I}, I',, Ty and 7', are adaptive law gains.

3 Analysis of predefined-time
stability
Consider the following Lyapunov function:

1
V, =V, +V+ Eu+—1 + - (F "WIW)+

2 €
1 o . .
§(F£1W§Wz)+ 5(7'?1151)+ E(Tilﬁz) (46)

The derivative of V; is given by
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‘73 = Vl + ‘/f+ Llcl.'lC + rcj’c +FI1W11W] +F51W21W2 + T;lﬁlﬁl + T;lﬁlfl2 <
z l+Z z I+Z
2 2 2 2 2 2 2 2 2
_klE kzw —_((V ) (‘/u) )—kull kr _-)/_T((‘/]) (Vr) )_

(et e e e e )
Ty ¥

YT YT

z <z 2 -z - +L - -
T, 0 S B g ) ) Wi s
yu yr yr
|

(|ut| by — u.h, tanh(—“)
A

T ayi- T oot T
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According to Lemma 4, based on Eq. (41), Eq. (47) can be transformed into
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Substitute Egs. (44) and (45) into Eq. (48):
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According to Lemma 2, the following inequalities hold:
inequalities are satisfied:
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According to Youngs inequality, the following Then, Eq. (49) can be transformed into
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Both sides of Eg. (52) are integrated tracking errors are uniformly bounded. Therefore,

simultaneously and the following inequality is met:

0<Vs< (Vz 0)- —) Tty 4 (53)
Po

Po

we further assume that there is always a positive

constant V), satisfying the following inequality:

V; is obviously bounded, which means that WIW, < Vi, i= 1,2,
' _ , T m -1 1+2 A B
Vi< — —kzwg—kuug—k,rg—ﬁ((vu Ty ) ( +(V,2) 2)—‘}/7“ (Mc 2 +u, 2)—
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In fact, if there is a > 0 satisfying the following

inequality
2—y

X 2— 2-y o (2-y
a ?-—a< - —=
2 2

=N

=V, (55)

Eqg. (54) realizes asymptotic convergence of the
closed- loop system. Further considering the prede-
fined-time convergence of the closed-loop system,
based on Eq. (55), we can rewrite Eq. (54) as
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2
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According to Lemma 1, in the control system, all
signals converge to a regional set near the origin
within a predefined time.

2 2
2yT0\2r (2yT.9\2+
{limesmin{( Y &z) v’( y d) y}}
=1 T I

The convergence time satisfies
TN < Tmax = \/ETC (58)

(hi”’ + hi*y) + %WFWI +

WIW, + iy, + Vo + 73

4 Simulation results

A desired circular trajectory was given by
{xd = 80+ 50sin(0.0571)

¥4 = 80— 50¢0s(0.051) (59)

Under the circular trajectory, four initial states
were selected as follows:
State 1: 5, = [75, 28, 0]", v, = [0, O, O]".
State 2: 5= [77, 27, 0.2], v, = [0.01, O, O]".
State 3: = [76, 33, 0.1]", v, = [0.02, -0.01, O]".
State 4: = [83, 34, -0.8]", v,= [0.02, 0, 0.01]".
Asymmetric input saturation was set to
70 =500 N, 7, = —400 N
77 =50N-m, 7, =-40N-m
External time-varying environment disturbances

were given by
Tg = — 14+ 65in(0.5¢1) cos(0.54)—

8 sin(0.5¢) sin(z) — 4 cos(0.51)
Ty, = 5sin(0.17) + 2 cos(0.31)
T4 = 6€08(0.32) sin(1.17) + 3sin(0.5¢) + 5 c0s(0.27)

(60)

Table 1 lists dynamics model parameters of the
selected USV in the simulation, and control
parameters set in this paper are shown in Table 2.
Predefined-time parameters are as follows: y= 0.35,
T,=65s,T,=65,T,,=65,7T,=6s,T,=65,T,=65,
1= U, T

Parameters of the SSNN were as follows: I, =
250, I', = 250, and initial values of the estimations
of SSNN weight W, and W, were W, =W, = 0. The
initial number of neurons was N = 41. Centers of
the SSNN's Gaussian function were uniformly
distributed within [-8, 8], with a breadth of 0.85.
The split threshold was 7, =0.8 and the decay
threshold was 74=0.1, and p,= 0.3. For performance
comparison between SSNN and RBFNNs,
RBFNNs adopted the same parameters as the
SSNN did.

Fig. 4 illustrates trajectory tracking effect in the
case of different initial positions of the USV.
Figs. 5-6 illustrate corresponding tracking errors.
According to Figs. 4-6, despite different initial
positions, the designed control system is capable of
convergence within predefined time, and the
predefined-time performance function can ensure
that tracking errors fall into a preset range within a
specified time (T, = 5 s), thus ensuring transient-
and steady-state tracking performance.

Fig. 7 illustrates the approximation effect of the
SSNN. F; and F, are uncertainties in the surge and
yaw directions respectively, while F, and F, are
approximated outputs of the SSNN. It can be seen
that the SSNN has a good capacity of approxima-
tion. Fig. 8 illustrates changes in number of SSNN
neurons. The initial number of neurons is 41, and
the final number of neurons stabilizes at 27 and 26,
respectively. Fig. 9 illustrates 2-norm of SSNN
weight estimations. From the figure, the 2-norm of
SSNN weight estimations converges at about 3 s,
and thus the SSNN is effective. Based on Figs. 7-9,
the SSNN has a good approximation effect.
Number of SSNN neurons can be adjusted online,
decreasing by 14 and 15 respectively. This reduces

Table 1 Dynamic model parameters of USV

Parameter Value Parameter Value Parameter Value Parameter Value
my kg 23.800 0 Xjugu/ (kg - m~) ~1.3274 N,/tkg-m-s 1) 0.105 2 Ni/kg-m?)  —1.0000
Xg/m 0.046 0 X /(kg-s-m™2) —-5.866 4 Niyw/kg 5.0437 Yir/kg —0.8450

I,/(kg-m?) 1.760 0 Yo /(kg-s™!) —0.8612 Njyjo/(kg-m) 0.1300 X, /kg-s") —0.7255
X,/kg —2.0000 Y /(kg-m 1) ~36.2823 N/(kg-m2.s7)  —1.9000 Yy /lkg-m)  —3.4500
Y, /kg —=10.000 0 Yppo/(kg-m™") —0.8050 Ny /(kg-m) 0.080 0

Y;/(kg-m) 0 Y, /(kg-m-s71) 0.107 9 Njy,/(kg-m?) —0.750 0
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Table 2 Control parameters

Parameter Value Parameter Value
[oa74] 8.00 T oo 0.10
Ty 5.00 Treo 0.05

ki 0.50 ky 1.65
ky 0.50 ky 12.00
T 25.00 T2 25.00
1 0.50 1 0.50
Ty/s 5.00
14
0 -State 1 State 4
State 2 yyyyyyyyyy TraCkIng
120 L State 3 trajectory
100 +
§ 80
60
40 +
20 : : ;
20 40 60 80 100 120 140
x/m
Fig. 4 Trajectory tracking for different initial positions
8 k! —— State 1
6 State 2
State 3
—— State 4
4 T,
S B of WNagd e Constraint boundary
£ | &
Iy 0 [
2 0.15
—4 | 0.10
0.05
o o ———
45 50 55
s . . . . .
0 20 40 60 80 100 120
t/s
Fig. 5 Tracking error of E
2.0
2 8 State 1
1.5 ¢ 1+ State 2
: State 3
ol 0 fre - # %tatezl
05 P [— Constraint boundary

1

ol 0 W

-1.5 ‘ 1 .
75 80 &5

2.0 : . ; : 4

0 20 40 60 80 100 120
tls
Fig. 6 Tracking error of .

computational cost of the system effectively.

The initial number of SSNN neurons was set to
41 and the final number of SSNN neurons was 27
and 26, respectively. To demonstrate superiority of
the SSNN, we selected RBFNNs with 41 and 27

0 ~
. ~50 S - S F,
ae —100 —4.0 w
|
o 150k —4.5 L i
—200 45 50 55
0 20 40 60 80 100 120

s
(a) Approximation effect Ff)':"l

Fy—Fy/(N'm)
= =
g

0 20 40 60 80
s

100 120

(b) Approximation effect 1’-‘;1:"z
Fig. 7 Approximation of the self-structuring neural network

42

—— Neuron-F,
Neuron-F,

40
38
36 ¢
34 ¢

K

Number of neurons

30 -
28 +

26 . . . : :
0 20 40 60 80 100
s

120

Fig. 8 Number of neurons

60
N AN

204 .0

0 20 40 60 30

t/s
(2) Weight estimation |||,

1911,

100 120

171,
=~

=3

%)

'

0 20 40 60 80
t/s
(b) Weight estimation [,

Fig. 9 The 2-norm of the SSNNs weight estimation

neurons for comparison. The RBFNNs and the
SSNN had the same gains and centers and breadths
of Gaussian functions. Fig. 10 illustrates control
inputs of different neural networks. The figure
shows that control inputs under the SSNN show a
stable and smooth curve within 0-6 s, while those
under the RBFNNs vary greatly, with sudden
changes. Fig. 11 compares the RBFNNs and SSNN
in terms of approximation errors. Compared with
the RBFNNs containing 41 and 27 neurons, the
SSNN. yields _smaller_approximation errors. From
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the analysis of approximation effect, SSNN vyields a
better approximation effect. Moreover, number of
SSNN neurons can be adjusted online, which can
reduce the computational burden of the closed-loop
control system effectively.

800

600 |— &-RBF27— 1, -RBF4l 7,-SSNN-....... Saturation
B PO N o NN o] (7: (11
400
Zv 200 Bl e e oo
3} 0k
=200 r
0 20 40 60 80 100 120
1/s
(a) Control input z,
0= RBF27 - -RBF41——z-SSNN. ......Saturation
60 e e R e OnStraint
T 40
= 20F
T 0 Wm
-20
74() s o ‘.‘.‘.....I.‘.‘.‘.‘.‘..‘I.“‘“.“‘.‘.‘...‘.‘.‘.‘.‘..I....A.“‘.‘.“I‘..A.““““
0 20 40 60 80 100 120
s
(b) Control input 7,
Fig. 10 Control inputs for different neural networks
100
RBF41-¢,
20 010 ——RBF27-¢,
z s0F 10 ' SSNN-¢,
= ! ot‘". |0.0%F =
\ 24 6 30 35 40
0 20 40 60 80 100 120
s
(a) Approximation error &
20 ¢ 0 RBF41-¢
i "2
10 N5 | ﬁ& ’\I —RBF27-,
2 T Ohe s eSS, |
T-10 b
20 ¢t " " L L 1
0 20 40 60 80 100 120

ts
(b) Approximation error €;

Fig. 11 Approximate error comparison between RBFNNs and
SSNNs

5 Conclusions

This paper proposed a scheme for SSNN-based
predefined-time trajectory tracking control. On this
basis, it solved such problems of USVs as unknown
time-varying disturbances, model uncertainty, and
input saturation. As a result, tracking accuracy of
the closed-loop control system and convergence
rates of system errors are improved. An SSNN was
adopted to compensate for unknown dynamics,
external time-varying environmental disturbances,
and effects of input saturation. Comparison with
RBFNNs further verified superiority of the SSNN-
based scheme. By using the Lyapunov theory, this
paper proved that all signals of the USV trajectory
tracking control_system were bounded, and that all

system errors converged to a small range within a
predefined time. Next, we will study how to reduce
communication burden of the control system.
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