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0 Introduction

As an important part of an intelligent ship, an in-

telligent engine room needs to use the monitoring

parameters of equipment states in the ship engine-

room system to give an alarm about anomalies and

intelligently analyze and evaluate its operation and

health conditions. Thus, decision-making support

can be provided for the use, manipulation, mainte-

nance, and management of system equipment [1].

At present, fixed thresholds are generally used

for judgment in the equipment-state evaluation and

monitoring alarm of a ship power system. The fixed

thresholds can be determined according to delivery

tests, real-ship tests, and empirical analysis. Com-

mon methods for threshold determination include

confidence-interval based, mean-variance based [2],

and threshold corridor based methods [3]. Over-high

thresholds will reduce alarm sensitivity, disenabling

normal operation of alarm systems. Too-low thresh-

olds will increase false alarm rates, resulting in ex-

cessive alarms. In addition, support-vector-machine

based prediction models have been widely used in

state monitoring [4], and intelligent diagnosis sys-

tems of ship power plants have also been developed

and applied to state evaluation of ships [5]. Howev-

er, none of the above work can adaptively update

thresholds according to actual situation of equip-

ment in operation. This will cause false alarms from

monitoring systems and judgment deviations of op-
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erational benchmarks and parameters. Thus, accu-

rate intelligent control and auxiliary decision-mak-

ing will fail.

In response to the above problem and actual re-

quirements of intelligent ships, this paper proposed

an adaptive-threshold model combining a support-

vector-regression (SVR) -based prediction model

with sliding time window. First, a simulated anneal-

ing (SA) algorithm was used to optimize the hyper

parameters C and g in the SVR model, and on this

basis, conventional state characteristic parameters

of ship power-system equipment were modeled for

prediction. Then, modeling residuals were trans-

formed into normal data through Johnson distribu-

tion, and adaptive thresholds were calculated by us-

ing a sliding time window in order for monitoring

alarm and state evaluation of power-system equip-

ment of intelligent ships. This method can deter-

mine adaptive thresholds according to real-time

state parameters of equipment in operation, so as to

reduce threshold bandwidth and false alarm rates.

Thus, the accuracy of state evaluation of ship pow-

er-system equipment can be improved.

1 Adaptive-threshold model

1.1 State characteristic parameters

As an important part of a ship engine room, an in-

telligent-ship power system mainly includes a main

propulsion diesel engine, a diesel genset, propulsion

shafting, a fuel system, a lubricating oil system, and

a cooling water system. Conventional state charac-

teristic parameters of power-system equipment in-

clude pressure, temperature, flow, and rotational

speed. However, for vibration-related data, due to

their over-high frequency and the insufficient timeli-

ness of the model in this paper, such data are not

considered. Operation states of equipment can be

described by a single-parameter or multi-parameter

method. For example, operation states of the main

propulsion diesel engine can be described by the

single parameter of exhaust temperature, while

those of the cooling system are described by multi-

ple parameters including pressure, pressure differ-

ence, and temperature. Due to complex and change-

able working conditions, ship power systems are af-

fected by their own inherent uncertainties and un-

certainties caused by loads, manipulation, and work-

ing-environment changes. As a result, thresholds of

conventional state characteristic parameters of intel-

ligent-ship power-system equipment vary in a wide

range. Thus, the use of fixed thresholds for monitor-

ing alarm and state evaluation in such a case will

lead to a great evaluation deviation. In order to

solve this problem, this paper selected conventional

state characteristic parameters of intelligent-ship

power systems as the sample set, and then analyzed

the adaptive-threshold method.

1.2 SVR-based prediction model

SVR is developed on the basis of support vector

machine (SVM). Considering the influences of mul-

tiple factors like degradation and working condi-

tions on samples, SVR is of strong robustness and

suitable for regression prediction. In this paper, an ε-

SVR model is used to predict the state parameters

of an intelligent-ship power system [6-7].

Suppose that a training sample set D and a func-

tion set F are given as follows:

（1）

（2）

where xi and yi are the ith input and output sample

data, respectively; R is a set of real numbers; n is

the sample dimension; f(x) is a nonlinear regression

function; w is a weight vector; wT is the transpose

of the weight vector; b is an offset.

The solving of a regression problem is to find a

function f(x) ∈ F, so that the error between the value

f(x) of the function at a training sample x (x ∈ Rn)

and the expected value y of the sample is less than

or equal to the given deviation ε.

The following planning problem is optimized by

selecting the weight vector w and the offset b:

（3）

Where ξi and ξ*
i are slack variables; C > 0 is a pen-

alty coefficient, indicating the degree of punishment

for samples beyond ε.

Its dual problem can be derived by setting a ker-

nel function K(xi, xj) and using Lagrangian multipli-

ers:

（4）
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where ai and aj are the Lagrangian multipliers corre-

sponding to the ith and jth variables, respectively;

a*
i and a*

j are optimal Lagrangian multipliers; xj is

the jth sample variable during the training.

The weight vector w and the offset b can be

solved after ai and a*
i are calculated. Then, the non-

linear regression function can be obtained as fol-

lows.

（5）

In this paper, an SVR-based prediction model is

established by loading the LIBSVM toolbox in Mat-

lab. Specific steps for the algorithm of the SVR-

based prediction model are as follows [8]:

1) Select monitoring data of conventional state

characteristic parameters of ship power-system

equipment as a sample set. Then, divide the set into

a training set and a prediction set according to the

time sequence.

2) Preprocess the data. Normalize data in both

the training and prediction sets, mapping the data to

[0, 1]. Specifically, the normalization function is

given by

（6）

where x' is a normalized sample datum; xmin and

xmax are the minimum and maximum of the data set,

respectively.

3) Determine the kernel function. The selection

of a kernel function must satisfy the Mercer's condi-

tion (any positive semi-definite function can be

used as a kernel function). In this paper, a Gaussian

radial basis function (RBF) is selected:

（7）

where σ is kernel width.

4) Select and optimize the hyper-parameters C

(the penalty coefficient) and g (the value of σ in the

kernel function) in SVR.

5) Train the training set with the optimized hyper-

parameters C and g.

6) Verify the SVR-based prediction model with

the test sample set.

1.3 Optimization of hyper-parameters

by SA

From Section 1.2, the core of the SVR model is

to select the penalty coefficient C and the kernel-

function parameter g. In this paper, an SA algorithm

is used to optimize the hyper-parameters C and g of

ε-SVR. Metropolis criterion is the key to the conver-

gence of the SA algorithm to a global optimal solu-

tion. Specifically,

（8）

where p is the probability of accepting a new solu-

tion; xnew is a new state; S(xnew) is the energy of a

new solution; xold is the current state; S(xold) is the

energy of the current solution; T is the current tem-

perature.

In updating the optimal solution to the objective

function by iteration, if the energy of a new solution

is lower than that of the current solution, the new

solution is accepted directly. Otherwise, the new so-

lution is not directly rejected. Instead, the solution

inferior to the current one is accepted with a certain

probability. Thus, the algorithm can jump out of the

local optimal solution and finally obtain a global op-

timal one [9]. As shown in Fig. 1, it is assumed that

with an initial solution at Point A in the figure, the

algorithm converges to a local optimal solution

Point B along the iterative direction. However, in-

stead of terminating here, the program accepts a so-

lution (Point C) inferior to Point B with a certain

probability according to the Metropolis criterion.

Thus, it jumps out of the local optimal solution and

finally converges to the global optimal solution at

Point D.

Iterative direction

Local optimal solution

Global optimal solution

Fig. 1 Optimization diagram of SA algorithm

Specific steps for implementing the SA algorithm

are as follows:

1) Initialization. Select an initial temperature T0

high enough, and let T = T0. Then, randomly select

an initial solution S1 as the starting point of algo-

rithm iteration. Besides, set the maximum number L

of iterations at each temperature and the end tem-

perature Tend.

2) Randomly generate a new solution S2 with re-

gard to the current temperature T and the number k

of iterations (where k = 1, 2, ..., L).

3) Calculate the increment Δf= f(S2)-f(S1), where

f(S1) and f(S2) are evaluation functions of S1 and S2,
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respectively.

4) If Δf < 0, accept S2 as the new current solution,

and let S1 = S2. If the probability p=exp(- Δf/T) is

greater than a random number rand(0, 1) between 0

and 1, replace S1 with S2 as the new current solu-

tion, and namely, let S1=S2. Otherwise, retain the

current solution S1.

5) Cooling. Set a cooling rate q, as well as tem-

peratures Tk and Tk+1 of the kth and (k+1)th iterations.

Specifically, Tk+1 = q × Tk. If Tk+1 < Tend, stop the iter-

ation to output the current solution as the global op-

timal solution, and then terminate the algorithm.

Otherwise, return to step 2) to repeat steps 2)-5).

Fig. 2 shows the flow chart of the algorithm. The

SA algorithm is irrelevant to the selected initial val-

ue. According to the Metropolis criterion, the algo-

rithm can accept a deteriorated solution with a cer-

tain probability during the search, thus jumping out

of a local optimal solution. In addition, this algo-

rithm has asymptotic convergence and a relatively

clear structure [10]. Therefore, parameter optimiza-

tion of the ε -SVR based prediction model by using

the SA algorithm can effectively improve the pre-

diction accuracy of the model.

Start

Set initial characteristic
parameters of SA

Current solution

Current temperature

Generate a new solution S2 after disturbance
Calculate

Yes

Yes

No

No

No

Yes

No

Yes

Retain the current
solution

Update the current
solution

Whether it has been
iterated L times?

Whether the
temperature reaches ？

Output the optimal
solution C and g

End

Reduce
temperature

Fig. 2 Flow chart of the SA algorithm

1.4 Normal transformation of residuals

According to the residuals between real and pre-

dicted data calculated by the SA-SVR based model,

evaluation errors of operation states of intelligent-

ship power-system equipment can be obtained,

which are shown in some unknown distributions.

Therefore, it is necessary to normalize residuals, so

that adaptive thresholds can be calculated on the

premise that residuals conform to the hypothesis of

normal distribution [11]. In this paper, Johnson distri-

bution is used for normal transformation of the

modeling residual variable X. Thus, three families

SB, SL, and SU of distribution (subscripts B, L, and

U denote bounded, lognormal, and unbounded dis-

tributions, respectively) are established, as listed in

Table 1. In Table 1, h is standard normal distribu-

tion; γ, η and δ, λ are position and scale parameters

of a Johnson curve, respectively.

Table 1 Johnson distribution system

Family of
distribution

Normal
transformation

Parameter
condition

X condition

With the functions in Table 1, the modeling resid-

ual variable X can be transformed into standard nor-

mal distribution h. The specific steps are as follows:

1) Select a random positive number z according

to the method proposed by Slifker et al. [12].

2) According to the probability density formula

of a standard normal distri-

bution, calculate probability density of four

symmetric and equidistant standard normal devia-

tions , where J=1, 2, 3, 4, and u is

a random variable.

3) On the basis of the relation ,

calculate the iJ
th observed value of the samples,

where s is the total number of samples.

4) Fit the sample data linearly to obtain the fit-

ting function g(i). Then, calculate the quantiles

of the sample. The quantiles are set as fol-

lows: , and

5) Let and .

Then, set the quantile ratio as .

6) Distinguish the three families in the Johnson

distribution system by using the quantile ratio QR.

Distinguishing criteria are as follows: In the case of
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QR < 1, select SB distribution; in the case of QR =

1, select SL distribution; in the case of QR > 1, se-

lect SU distribution.

7) After the selection of distribution forms, calcu-

late specific parameters of the three transformed

types with the following formulas.

(1) For SB distribution:

（9）

(2) For SL distribution:

（10）

(3) For SU distribution:

（11）

8) According to the selected distribution forms,

calculate h after normal transformation by using Ta-

ble 1.

After the normal transformation of residuals, a

KS-test (Kolmogorov-Smirnov test) can be carried

out in Matlab. The output verification result of 0 in-

dicates that the data after the transformation con-

form to standard normal distribution. Fig. 3 and

Fig. 4 show normal probability plots and frequency

distribution histograms of residuals before and after

normal transformation, respectively.

In Fig. 3, the empirical probability of each residu-

al is plotted with a blue "+" mark. A red solid refer-

ence line is used to connect the first and third quar-

tiles of the data, and a red dotted reference line is

used to extend the solid line to both ends of the da-

ta. If all the sample points are near the red reference

line, it is assumed that the samples obey a normal

distribution. If the samples do not obey a normal

distribution, the "+" marks will form a curve. From

Fig. 3 Normal probability plot

Fig. 4 Frequency distribution histogram

Residuals

(a) Before transformation

Residuals

(b) After transformation
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Fig. 3, before the normal transformation of residu-

als, the " + " marks in the normal probability plot

are not distributed along the red reference line,

forming a curve. By contrast, after the normal trans-

formation, the blue "+ " marks are close to the red

reference line. From Fig. 4, the frequency distribu-

tion histogram of residuals after normal transforma-

tion is close to the red normal-distribution curve,

which verifies the feasibility of normal transforma-

tion with the method in this paper.

1.5 Realization of adaptive thresholds

After the normal transformation of residuals,

thresholds can be calculated according to the formu-

las in Table 1. Specific steps are as follows.

1) Determine the threshold interval of

the standard normal distribution h according to the

Pauta criterion, where v is the maximum threshold.

2) According to the selected distribution forms,

calculate thresholds of X by using the following for-

mulas.

(1) For SB distribution:

（12）

(2) For SL distribution:

（13）

(3) For SU distribution:

（14）

3) Thresholds of operation parameters of intelli-

gent-ship power-system equipment are obtained by

substituting X = Xtest-XSVM into step 2), where Xtest

and XSVM are test and predicted data, respectively.

(1) For SB distribution:

（15）

(2) For SL distribution:

（16）

(3) For SU distribution:

（17）

With the above flow chart of threshold calcula-

tion, a sliding time window is introduced to realize

adaptive thresholds. First, suppose that there is a

window containing s modeling residuals, and nor-

malize these residuals. Then, calculate the thresh-

olds according to the above method, and take their

average as the threshold at this time. Finally, with-

out changing the total number of data in the win-

dow, slide the window backward frame by frame,

and repeat the above calculation to obtain the thresh-

old at each moment in turn. Thus, the self-adapta-

tion of thresholds is realized. As window size will

directly affect accuracy of thresholds and sensitivity

to abnormal data, it is necessary to adjust the win-

dow size according to actual working conditions [3,13].

After the prediction model is established accord-

ing to historical data of state monitoring, training

and prediction samples of the model can be updated

continuously with real-time state-monitoring mea-

surements based on the simulated queue tail interpo-

lation. Moreover, the calculation of the current mod-

el can be repeated. As the RBF-based ε-SVR predic-

tion model has taken into account effects of degra-

dation and different working conditions during its

establishment, adaptive thresholds can be calculated

in real-time without the necessity of model updat-

ing.

Fig. 5 shows the flow chart of establishing the

adaptive-threshold model for power-system equip-

ment of an intelligent ship.

Initialization of training and
prediction sets with historical

monitoring data

Prediction with training
data of SA-SVR model

Real-time
measurements

Calculation of residuals

Johnson normal
transformation of residuals

Calculation of
adaptive thresholds

Real-time data updating of
the training set to realize

continuous threshold calculation

Output of
adaptive-threshold graphs

Fig. 5 Flow chart of the dynamic adaptive threshold model

2 Verification of adaptive thresh-
old model

2.1 Method verification

In this paper, the method was verified by using

state characteristic parameters of power-system

equipment of a ship in normal operation. During pa-
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rameter selection, an over-large sliding-window

size, that is, excessive data in a window, will weak-

en the influence of a single group of data on calcula-

tion results and then reduce sensitivity of the mod-

el. As a result, parameter changes reflected by

thresholds will be delayed accordingly. On the other

hand, a too-small sliding-window size will amplify

the influence of random errors. This may make the

model excessively sensitive, thus reducing the accu-

racy of evaluation results. With comprehensive con-

sideration, the window size in this paper was set to

50 to balance the requirements on timeliness of

evaluation results and sensitivity of the model.

Fig. 6 shows the calculated adaptive thresholds.

Time/s

T
hr

es
ho

ld

Real-time
state parameter

Adaptive
threshold

Limit value
Max

Min

Fig. 6 Verification of dynamic adaptive threshold model

In Fig. 6, the red solid lines refer to traditional

fixed-threshold lines of intelligent-ship power-sys-

tem equipment; the blue solid line refers to a real-

time state-parameter curve; the green solid lines re-

fer to adaptive-threshold curves. According to Fig. 6,

the adaptive thresholds are more consistent with the

real-time state parameters of the ship power-system

equipment than the traditional fixed thresholds.

With a more compact bandwidth of thresholds,

threshold sensitivity can be improved. In terms of

monitoring alarm, the defect of failing to give an

alarm in the case of equipment anomalies caused by

over-high fixed thresholds can be overcome. This is

conducive to optimizing maintenance and manage-

ment of ship power-system equipment. Moreover,

with improved accuracy, adaptive thresholds can re-

flect the actual operation of ship power-system

equipment more accurately. Thus, a more reason-

able and effective reference basis can be provided

for state evaluation and auxiliary decision-making

of intelligent ship power-system equipment.

2.2 Verification of abnormal data

Operation states of the main propulsion diesel en-

gine can be described by a single parameter, that is,

"exhaust temperature". Abnormal exhaust tempera-

tures of the main propulsion diesel engine of a ship

were used as verification data to verify the estab-

lished adaptive-threshold model. Specifically, the

real-ship data were collected with a period of 1 s.

Fig. 7 shows the results.

Time/s

Adaptive threshold
Real-time state parameter
Limit value

Max

Min

92

T
em

pe
ra

tu
re

/℃

Fig. 7 Verification of abnormal data in the dynamic adaptive

threshold model

From Fig. 7, compared with the traditional fixed-

threshold method, in the case of abnormal rises in

exhaust temperature of the main engine, the adap-

tive-threshold method can successfully detect the

anomalies and give alarms 92 s in advance. There-

fore, this method overcomes the disadvantage that

the fixed-threshold method is insensitive to abnor-

mal working conditions of power-system equip-

ment, and improves the efficiency of an intelligent-

ship monitoring alarm system. Thus, it can provide

more accurate data for system state evaluation and

auxiliary decision-making.

3 Conclusions

An adaptive-threshold model for conventional

state characteristic parameters of intelligent-ship

power-system equipment was presented in this pa-

per. First, during the adaptive optimization of

thresholds, an SA algorithm was used to optimize

the SVR-based prediction model to predict state

characteristic parameters. Then, residuals between

predicted and actual data were calculated, and on

this basis, adaptive thresholds were calculated in

combination with the Johnson distribution system.

According to the verification results based on real-

ship operation data, as reference thresholds, adap-

tive thresholds have narrower bandwidth than tradi-

tional fixed thresholds do. Thus, the adaptive-

threshold method is of better adaptability in the

case of equipment anomalies and able to give earli-

er alarms, providing more decision-making time for

ship managers. In addition, adaptive thresholds are

more closely related to real-time monitoring data,

and their changing trends can be used as a reference

basis for state evaluation and life prediction of intel-

ligent ships.
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智能船舶动力系统设备的
自适应阈值方法

高泽宇，张鹏*，张博深，张跃文，孙培廷
大连海事大学 轮机工程学院，辽宁 大连 116026

摘 要：［目的目的］针对智能船舶动力系统设备的状态监控报警不及时、阈值带宽过大、状态评估参数不准确等问

题，提出自适应阈值的确定方法，用以对动力系统设备进行监控报警和状态评估。［方法方法］首先，采用模拟退火

算法优化回归支持向量机（SVR）预测模型，对动力系统设备的常规状态特征参数进行建模；然后，对建模残差

进行正态转化，并结合滑动时间窗来构建自适应阈值模型；最后，选取某船舶主推进柴油机的排烟温度作为研

究对象进行实例验证。［结果结果］研究结果表明，相较于传统固定阈值，自适应阈值模型的带宽更为紧凑，具有良

好的自适应性，能够提前识别动力系统设备的异常现象。［结论结论］所提方法提高了监控报警系统的效率和阈值

精度，可为早期故障诊断和系统状态评估提供更准确的依据。

关键词：智能船舶；自适应阈值；回归支持向量机；模拟退火；状态特征参数
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