Zhang Wei, Liao Yide. Pressure tracking control of large pressure vessel[J]. Chinese Journal of Ship Research, 2019, 14(4): 143-146. DOI: 10.19693/j.issn.1673-3185.01396
Citation: Zhang Wei, Liao Yide. Pressure tracking control of large pressure vessel[J]. Chinese Journal of Ship Research, 2019, 14(4): 143-146. DOI: 10.19693/j.issn.1673-3185.01396

Pressure tracking control of large pressure vessel

More Information
  • Received Date: August 30, 2018
  • Available Online: May 07, 2021
© 2019 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  In light of the requirement for internal pressure tracking control of a large vessel, in order to meet the demand of rapidly high flow of pressurization section, and improve the tracking performance of pressurization section and depressurization section of pressure vessel,
      Methods  the internal pressure control system for a new type of 75 m3 pressure vessel is developed, in which a high pressure air water tank was used as an energy accumulator. The change of the internal pressure was realized by controlling the liquid volume that comes from the energy accumulator into the large vessel, to achieve accurate tracking of pressurization section. In order to improve the tracking accuracy of the depressurization section, the flow control valve and the high-speed solenoid switch valve were installed on the outlet pipe of the pressure vessel. PID control algorithm with dead zone was used to compensate for phase lag.
      Results  The test results show that the dynamic tracking accuracy of the system can be kept within 0.4 MPa, and the static pressure maintaining accuracy can be kept within 0.1 MPa, which validated the good pressure tracking performance and static pressure accuracy.
      Conclusions  This control method can effectively solve the problem that the instantaneous large flow and pressure control precision of the false sea back pressure can not be ensured simultaneously when the land test simulates the application scenario of underwater vehicle with large inertia and variable depth.
  • [1]
    吴金波, 梅洪, 李维嘉.基于增益调度的大压力筒压力跟踪控制[J].舰船科学技术, 2012, 34(6):9-14. doi: 10.3404/j.issn.1672-7649.2012.06.002

    Wu J B, Mei H, Li W J, et al. Pressure tracking control of a large pressure chamber based on gain-scheduling[J]. Ship Science and Technology, 2012, 34(6):9-14(in Chinese). doi: 10.3404/j.issn.1672-7649.2012.06.002
    [2]
    李维嘉, 李绍安, 罗兴桂.高精度压力筒试验系统[J].中国造船, 2008, 49(1):72-76. doi: 10.3969/j.issn.1000-4882.2008.01.011

    Li W J, Li S A, Luo X G. The pressure vessel experiment system with high precision[J]. Shipbuilding of China, 2008, 49(1):72-76(in Chinese). doi: 10.3969/j.issn.1000-4882.2008.01.011
    [3]
    朱保国.压力容器设计知识[M].北京:化学工业出版社, 2005.

    Zhu B G. Pressure vessel design knowledge[M]. Beijing:Chemical Industry Press, 2005(in Chinese).
    [4]
    罗声, 李维嘉, 张金喜.基于改变容积的高精度压力控制系统的研究[J].液压与气动, 2007(5):18-19. doi: 10.3969/j.issn.1000-4858.2007.05.008

    Luo S, Li W J, Zhang J X. A high precision pressure control system based on the controllable varied volume of contained liquid[J]. Chinese Hydraulics & Pneumatics, 2007(5):18-19(in Chinese). doi: 10.3969/j.issn.1000-4858.2007.05.008
    [5]
    吴珏斐, 李维嘉, 梁来雨.某型压力筒的压力控制系统设计[J].舰船科学技术, 2011, 33(9):56-59. doi: 10.3404/j.issn.1672-7649.2011.09.012

    Wu J F, Li W J, Liang L Y. The design and simulation for pressure-control system of one pressure vessel[J]. Ship Science and Technology, 2011, 33(9):56-59(in Chinese). doi: 10.3404/j.issn.1672-7649.2011.09.012
    [6]
    刘永, 谷立臣, 杨彬, 等.液压系统流量、压力闭环控制实验研究[J].机床与液压, 2017, 45(7):23-25, 69. doi: 10.3969/j.issn.1001-3881.2017.07.006

    Liu Y, Gu L C, Yang B, et al. Experimental study on closed loop control of flow and pressure of hydraulic system[J]. Machine Tool & Hydraulics, 2017, 45(7):23-25, 69(in Chinese). doi: 10.3969/j.issn.1001-3881.2017.07.006
    [7]
    王孝科, 张海军, 薛风春. 1150 mm可逆冷轧机液压自动控制系统[J].机床与液压, 2011, 39(16):94-96. doi: 10.3969/j.issn.1001-3881.2011.16.033

    Wang X K, Zhang H J, Xue F C. Automatic control system of 1150 mm reversible cold rolling mill[J]. Machine Tool & Hydraulics, 2011, 39(16):94-96(in Chinese). doi: 10.3969/j.issn.1001-3881.2011.16.033
    [8]
    黄崇莉.基于PLC摩擦焊压力闭环控制系统的设计[J].液压与气动, 2012(3):49-51. doi: 10.3969/j.issn.1000-4858.2012.03.018

    Huang C L. Design of pressure closed-loop control system for friction welding machine based on PLC[J]. Chinese Hydraulics & Pneumatics, 2012(3):49-51(in Chinese). doi: 10.3969/j.issn.1000-4858.2012.03.018
    [9]
    侯伯杰, 李小清, 周云飞, 等.直线电机伺服系统的复合前馈PID控制[J].机床与液压, 2009, 37(2):56-58, 41. doi: 10.3969/j.issn.1001-3881.2009.02.018

    Hou B J, Li X Q, Zhou Y F, et al. The development of feed forward plus PID controller for linear motor[J]. Machine Tool & Hydraulics, 2009, 37(2):56-58, 41(in Chinese). doi: 10.3969/j.issn.1001-3881.2009.02.018
    [10]
    刘金琨.先进PID控制MATLAB仿真[M]. 2版.北京:电子工业出版社, 2004.

    Liu J K. MATLAB simulation of advanced PID control[M]. 2nd ed. Beijing:Electronics industry Press, 2004(in Chinese).
  • Related Articles

    [1]Study on flow characteristics of steam turbine control valves with different spool diffusion lines[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.03736
    [2]YUAN Jianping, SUN Hanbing. Built-in test technology for electro-hydraulic servo-valve amplifier[J]. Chinese Journal of Ship Research, 2021, 16(3): 207-214. DOI: 10.19693/j.issn.1673-3185.01905
    [3]XIA Ji, LIAO Yide, YANG Kai. 基于AMESim的超高压气动吹除阀仿真与实验研究[J]. Chinese Journal of Ship Research, 2015, 10(5): 117-122. DOI: 10.3969/j.issn.1673-3185.2015.05.019
    [4]CHEN Yan, CAI Lin. 管路阻力计算方法对调节阀性能预测结果的影响[J]. Chinese Journal of Ship Research, 2015, 10(4): 137-142. DOI: 10.3969/j.issn.1673-3185.2015.04.021
    [5]YANG Bo, ZHU Xiang, ZHANG Ganbo. 舰船管路阀组单元振动特性分析及结构参数优化研究[J]. Chinese Journal of Ship Research, 2013, 8(2): 90-94. DOI: 10.3969/j.issn.1673-3185.2013.02.016
    [6]Liu Hui, Ge Liang, Yan Jun. 船用蝶阀液压控制系统的数值仿真[J]. Chinese Journal of Ship Research, 2012, 7(2): 97-101,107. DOI: 10.3969/j.issn.1673-3185.2012.02.018
    [7]Zhang Qiaobin, Deng Wenge, Zhang Xiaofeng. Mathematic Model Analysis of Electromagnetic Relief Valve for Common Rail System[J]. Chinese Journal of Ship Research, 2011, 6(4): 99-103. DOI: 10.3969/j.issn.1673-3185.2011.04.022
    [8]Yang Mingguo. 高压空气减压阀的动态性能仿真[J]. Chinese Journal of Ship Research, 2010, 5(4): 56-60. DOI: 10.3969/j.issn.1673-3185.2010.04.013
    [9]Jiang Shan, Zhang Jingwei, Wu Chongjian, Xu Qing, Peng Wenbo. 通海阀内流场的三维数值模拟[J]. Chinese Journal of Ship Research, 2009, 4(2): 37-41. DOI: 10.3969/j.issn.1673-3185.2009.02.009
    [10]Ding Zhenlin. 熔丝型混合式直流限流开关的分析与设计[J]. Chinese Journal of Ship Research, 2008, 3(1): 77-80. DOI: 10.3969/j.issn.1673-3185.2008.01.019
  • Cited by

    Periodical cited type(2)

    1. 杜为安,张琦,杨继行,闫超星,张翼,刘成洋. 压力容器环形下降段内含硼溶液流动混合特性的数值模拟分析. 原子能科学技术. 2021(03): 432-439 .
    2. 杨玉兰. 饮料食品灌装封盖机封盖压力动态控制方法. 食品工业. 2021(07): 180-184 .

    Other cited types(1)

Catalog

    Article views (404) PDF downloads (61) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return