Citation: | HU X J, LI Q, LIU J L, et al. Research status and prospects of satellite-shore-based integrated network technology for remotely-controlled ships[J]. Chinese Journal of Ship Research, 2025, 20(1): 15–24 (in Chinese). DOI: 10.19693/j.issn.1673-3185.04264 |
The purpose of this work is to optimize the communication architecture for existing remotely-controlled ships to meet the challenges of network connectivity in diverse environments (e.g., ports, deep-sea, and polar regions), aiming to address the issues of insufficient coverage, limited bandwidth, and high communication latency. First, the applicability and technical characteristics of shore-based and satellite communication networks are systematically summarized, while the diverse wireless communication requirements of remotely-controlled ships operating in different water areas are comprehensively analyzed. Based on this, a satellite-shore-based integrated network architecture that fuses multiple wireless communication systems is proposed. It aims to deeply integrate satellite and shore-based networks, thereby constructing an intelligent and stable shipboard communication system. By revealing the huge application potential of the satellite-shore-based integrated network architecture, which offers economic and service quality advantages for remotely-controlled ships in complex navigation environments, and by sorting out relevant key technologies and existing bottleneck issues, the proposed integrated communication network architecture is expected to provide a theoretical reference for optimizing the communication of remotely-controlled ships under diverse network conditions.
[1] |
王远渊, 刘佳仑, 马枫, 等. 智能船舶远程驾驶控制技术研究现状与趋势[J]. 中国舰船研究, 2021, 16(1): 18–31. doi: 10.19693/j.issn.1673-3185.01939
WANG Y Y, LIU J L, MA F, et al. Review and prospect of remote control intelligent ships[J]. Chinese Journal of Ship Research, 2021, 16(1): 18–31 (in Chinese). doi: 10.19693/j.issn.1673-3185.01939
|
[2] |
The Maritime Executive. Seafarer labor shortage reaches 17-year high reports drewry[EB/OL]. (2023-06-08) [2024-11-18]. https://maritime-executive.com/article/seafarer-labor-shortage-reaches-17-year-high-reports-drewry.
|
[3] |
International Maritime Organization. 2023 IMO strategy on reduction of GHG emissions from ships[EB/OL]. (2023-03-16) [2024-11-18]. https://www.imo.org/en/OurWork/Environment/Pages/2023-IMO-Strategy-on-Reduction-of-GHG-Emissions-from-Ships.aspx.
|
[4] |
严新平. 智能船舶的研究现状与发展趋势[J]. 交通与港航, 2016, 3(1): 25–28. doi: 10.16487/j.cnki.issn2095-7491.2016.01.007
YAN X P. Research status and development trend of intelligent ships[J]. Communication & Shipping, 2016, 3(1): 25–28 (in Chinese). doi: 10.16487/j.cnki.issn2095-7491.2016.01.007
|
[5] |
TISSARI J, MAKKONEN H, JOKIOINEN E, et al. Remote and autonomous ships-the next steps[R]. London: Rolls-Royce Plc, 2016.
|
[6] |
孙丹宁. 全球首艘具有远程遥控和自主航行功能的科研及实训船下水[EB/OL]. (2023-03-11) [2024-11-18]. https://news.sciencenet.cn/htmlnews/2023/12/514939.shtm.
SUN D N. The world's first scientific research and practical training ship with remote control and autonomous navigation launched[EB/OL]. (2023-03-11) [2024-11-18]. https://news.sciencenet.cn/htmlnews/2023/12/514939.shtm (in Chinese).
|
[7] |
王绪明, 申琼珍. 武汉理工大学组织研发的国内首艘内河远程控制智能船舶顺利试航[EB/OL]. (2024-10-16) [2024-11-18]. https://its.whut.edu.cn/?zhongxinxinwen/1452.html.
WANG X M, SHEN Q Z. The first domestic inland river remote control intelligent ship organized and developed by Wuhan University of Technology successfully sails on trial[EB/OL]. (2024-10-16) [2024-11-18]. https://its.whut.edu.cn/?zhongxinxinwen/1452.html (in Chinese).
|
[8] |
IMO. Maritime cyber risk management in safety management systems: MSC 428(98)[S]. London: IMO, 2017.
|
[9] |
ISO. Ships and marine technology – general requirements for publish-subscribe architecture on ship-shore data communication: ISO 18131[S]. Geneva: ISO, 2024.
|
[10] |
中国船级社. 船舶数字化检验数据交换技术指南: GD 21−2023[S]. 北京: 中国船级社, 2023.
CCS. Technical guide for digital survey data exchange of ships: GD 21−2023[S]. Beijing: CCS, 2023 (in Chinese).
|
[11] |
中国船级社. 船舶网络安全指南: GD 014−2024[S]. 北京: 中国船级社, 2024.
CCS. Cyber security guidelines for ships: GD 014−2024[S]. Beijing: CCS, 2024 (in Chinese).
|
[12] |
董浩, 宋亮, 化存卿, 等. 海上通信技术发展与研究综述[J]. 电信科学, 2022, 38(5): 1–17. doi: 10.11959/j.issn.1000-0801.2022087
DONG H, SONG L, HUA C Q, et al. Survey of the research and development on the maritime communication technology[J]. Telecommunications Science, 2022, 38(5): 1–17 (in Chinese). doi: 10.11959/j.issn.1000-0801.2022087
|
[13] |
VALTA M, JUTILA M, JÄMSÄ J. IEEE 802.11p and LTE as enablers of cognitive vehicle-to-infrastructure communication[C]//Proceedings of 2015 6th IEEE International Conference on Cognitive Infocommunications. Gyor: IEEE, 2015: 71−6. doi: 10.1109/CogInfoCom.2015.7390567.
|
[14] |
AUST S. Measurement study of IEEE 802.11ah sub-1 GHz wireless channel performance[C]//Proceedings of 2024 IEEE 21st Consumer Communications & Networking Conference (CCNC). Las Vegas: IEEE, 2024: 847−850. doi: 10.1109/CCNC51664.2024.10454693.
|
[15] |
金华标, 肖骁. 基于北斗短报文与4G的内河船载智能终端船岸通信技术[J]. 船海工程, 2021, 50(4): 67–71, 76. doi: 10.3963/j.issn.1671-7953.2021.04.015
JIN H B, XIAO X. On ship-to-shore communication technology of inland waterway shipboard intelligent terminal based on Beidou short message and 4G[J]. Ship & Ocean Engineering, 2021, 50(4): 67–71, 76 (in Chinese). doi: 10.3963/j.issn.1671-7953.2021.04.015
|
[16] |
LI X L, FENG W, WANG J, et al. Enabling 5G on the ocean: a hybrid satellite-UAV-terrestrial network solution[J]. IEEE Wireless Communications, 2020, 27(6): 116–121. doi: 10.1109/MWC.001.2000076
|
[17] |
赵敏笑. 5G通信技术的船舶航行状态远程监测系统[J]. 舰船科学技术, 2021, 43(1A): 43–45. doi: 10.3404/j.issn.1672-7649.2021.1A.015
ZHAO M X. Remote monitoring system for ship navigation status based on 5G communication technology[J]. Ship Science and Technology, 2021, 43(1A): 43–45 (in Chinese). doi: 10.3404/j.issn.1672-7649.2021.1A.015
|
[18] |
汪洋, 叶挺, 李廷文, 等. 自主船舶航行系统信息空间安全: 挑战与探索[J]. 华中科技大学学报(自然科学版), 2023, 51(2): 64–76. doi: 10.13245/j.hust.230205
WANG Y, YE T, LI T W, et al. Cyberspace security for autonomous ship navigation system: challenges and explorations[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51(2): 64–76 (in Chinese). doi: 10.13245/j.hust.230205
|
[19] |
PLASS S, CLAZZER F, BEKKADAL F. Current situation and future innovations in Arctic communications[C]//Proceedings of 2015 IEEE 82nd Vehicular Technology Conference. Boston: IEEE, 2015: 1−7. doi: 10.1109/VTCFall.2015.7390883.
|
[20] |
FENECH H, AMOS S, HIRSCH A, et al. VHTS systems: requirements and evolution[C]//Proceedings of 2017 11th European Conference on Antennas and Propagation. Paris: IEEE, 2017: 2409−2412. doi: 10.23919/EuCAP.2017.7928175.
|
[21] |
TELESAT. Telesat Lightspeed™ LEO network[EB/OL]. (2024-03-11) [2024-11-18]. https://www.telesat.com/leo-satellites/.
|
[22] |
Iridium LEO Constellation[EB/OL]. [2020-06-29] [2024-11-18]. https://www.iridium.com/network/globalnetwork/.
|
[23] |
COLOMBO C. Long-term evolution of highly-elliptical orbits: luni-solar perturbation effects for stability and re-entry[J]. Frontiers in Astronomy and Space Sciences, 2019, 6: 34. doi: 10.3389/fspas.2019.00034
|
[24] |
ILCEV M. New aspects for modernization global maritime distress and safety system (GMDSS)[J]. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 2020, 14(4): 991–998. doi: 10.12716/1001.14.04.26
|
[25] |
封锦. 基于SDN技术的海上船舶现场通信网络架构设计[J]. 舰船科学技术, 2021, 43(14): 142–144. doi: 10.3404/j.issn.1672-7649.2021.7A.048
FENG J. Design of on-site communication network architecture for marine vessels based on SDN technology[J]. Ship Science and Technology, 2021, 43(14): 142–144 (in Chinese). doi: 10.3404/j.issn.1672-7649.2021.7A.048
|
[26] |
马文静, 张超超, 赵文豪, 等. 面向5G网络虚拟化技术的安全研究[J]. 信息技术与标准化, 2024(9): 51–56. doi: 10.3969/j.issn.1671-539X.2024.09.017
MA W J, ZHANG C C, ZHAO W H, et al. Security research on 5G network virtualization technologies[J]. Information Technology & Standardization, 2024(9): 51–56 (in Chinese). doi: 10.3969/j.issn.1671-539X.2024.09.017
|
[27] |
代燕. 基于船联网的MILK-RUN船舶运输调度系统研究[J]. 舰船科学技术, 2017, 39(22): 28–30.
DAI Y. Research on MILK-RUN ship transportation scheduling system based on ship networking[J]. Ship Science and Technology, 2017, 39(22): 28–30 (in Chinese).
|
[28] |
刘云璐, 杨光, 杨宁, 等. 面向5G的多网融合研究[J]. 电信科学, 2015, 31(5): 63–67. doi: 10.11959/j.issn.1000-0801.2015114
LIU Y L, YANG G, YANG N, et al. Study on multi-RAT coordination in 5G[J]. Telecommunications Science, 2015, 31(5): 63–67 (in Chinese). doi: 10.11959/j.issn.1000-0801.2015114
|
[29] |
郑亮, 严彬. 基于SDN/NFV的海军虚拟军事信息网络构建方法[J]. 舰船电子工程, 2016, 36(8): 123–126. doi: 10.3969/j.issn.1672-9730.2016.08.030
ZHENG L, YAN B. Struction means in the navy virtual information network based on SDN/NFV technology[J]. Ship Electronic Engineering, 2016, 36(8): 123–126 (in Chinese). doi: 10.3969/j.issn.1672-9730.2016.08.030
|
[30] |
蒋欣秀, 常俊, 李波, 等. 面向海洋节能边缘计算的任务卸载研究[J]. 计算机工程与科学, 2022, 44(9): 1563–1573. doi: 10.3969/j.issn.1007-130X.2022.09.006
XIN X X, JUN C, LI B, et al. Research on task unloading for marine energy-saving edge computing[J]. Computer Engineering and Science, 2022, 44(9): 1563–1573 (in Chinese). doi: 10.3969/j.issn.1007-130X.2022.09.006
|
[31] |
姜俊颖. 基于5G通信技术的船舶网络系统设计[J]. 舰船科学技术, 2022, 44(23): 169–172. doi: 10.3404/j.issn.1672-7649.2022.23.035
JIANG J Y. Design of ship network system based on 5G communication technology[J]. Ship Science and Technology, 2022, 44(23): 169–172 (in Chinese). doi: 10.3404/j.issn.1672-7649.2022.23.035
|
[32] |
ZADA M, SHAH I A, YOO H. Integration of sub-6-GHz and mm-wave bands with a large frequency ratio for future 5G MIMO applications[J]. IEEE Access, 2021, 9: 11241–11251. doi: 10.1109/ACCESS.2021.3051066
|
[33] |
ALI S A, WAJID M, KUMAR A, et al. Design challenges and possible solutions for 5G SIW MIMO and phased array antennas: a review[J]. IEEE Access, 2022, 10: 88567–88594. doi: 10.1109/ACCESS.2022.3197226
|
[34] |
LI X L, FENG W, WANG J, et al. Enabling 5G on the ocean: a hybrid satellite-UAV-terrestrial network solution[J]. IEEE Wireless Communications, 2020, 27(6): 116-121. doi: 10.1109/MWC.001.2000076.
|
[35] |
陈立家, 周为, 许毅, 等. 一种基于SDN的多约束无人船网络传输路由算法[J]. 中国舰船研究, 2022, 17(4): 107–113. doi: 10.19693/j.issn.1673-3185.02454
CHEN L J, ZHOU W, XU Y, et al. Multi-constrained unmanned surface vessel network transmission routing algorithm based on SDN[J]. Chinese Journal of Ship Research, 2022, 17(4): 107–113 (in both Chinese and English). doi: 10.19693/j.issn.1673-3185.02454
|
[36] |
ALOTAIBI A, BARNAWI A. IDSoft: a federated and softwarized intrusion detection framework for massive internet of things in 6G network[J]. Journal of KingSaud University - Computer and Information Sciences, 2023, 35(6): 101575. doi: 10.1016/j.jksuci.2023.101575
|
[37] |
ZHANG C C, WANG X W, DONG A W, et al. Energy efficient network service deployment across multiple SDN domains[J]. Computer Communications, 2020, 151: 449–462. doi: 10.1016/j.comcom.2020.01.019
|
[38] |
QU K G, ZHUANG W H, YE Q, et al. Dynamic flow migration for embedded services in SDN/NFV-enabled 5G core networks[J]. IEEE Transactions on Communications, 2020, 68(4): 2394–2408. doi: 10.1109/TCOMM.2020.2968907
|
[39] |
IBRAHIM A A Z, HASHIM F, NOORDIN N K, et al. Heuristic resource allocation algorithm for controller placement in multi-control 5G based on SDN/NFV architecture[J]. IEEE Access, 2021, 9: 2602–2617. doi: 10.1109/ACCESS.2020.3047210
|
[40] |
SINGH J, REFAEY A, SHAMI A. Multilevel security framework for nfv based on software defined perimeter[J]. IEEE Network, 2020, 34(5): 114–119. doi: 10.1109/MNET.011.1900563
|
[41] |
包寅盛, 卓磊, 曹昊, 等. 5G MEC大型船舶智慧引航应用[J]. 中国仪器仪表, 2021(2): 19–21.
BAO Y S, ZHUO L, CAO H, et al. Application of 5G MEC large ship intelligent pilotage[J]. China Instrumentation, 2021(2): 19–21 (in Chinese).
|
[42] |
WU Z Y, YAN D F. Deep reinforcement learning-based computation offloading for 5G vehicle-aware multi-access edge computing network[J]. China Communications, 2021, 18(11): 26–41. doi: 10.23919/JCC.2021.11.003
|
[43] |
SHAH S D A, GREGORY M A, LI S, et al. SDN enhanced multi-access edge computing (MEC) for E2E mobility and QoS management[J]. IEEE Access, 2020, 8: 77459–77469. doi: 10.1109/ACCESS.2020.2990292
|