HU X J, LI Q, LIU J L, et al. Research status and prospects of satellite-shore-based integrated network technology for remotely-controlled ships[J]. Chinese Journal of Ship Research, 2025, 20(1): 15–24 (in Chinese). DOI: 10.19693/j.issn.1673-3185.04264
Citation: HU X J, LI Q, LIU J L, et al. Research status and prospects of satellite-shore-based integrated network technology for remotely-controlled ships[J]. Chinese Journal of Ship Research, 2025, 20(1): 15–24 (in Chinese). DOI: 10.19693/j.issn.1673-3185.04264

Research status and prospects of satellite-shore-based integrated network technology for remotely-controlled ships

More Information
  • Received Date: November 07, 2024
  • Revised Date: January 07, 2025
  • Available Online: January 19, 2025
  • Published Date: February 11, 2025
© 2025 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • The purpose of this work is to optimize the communication architecture for existing remotely-controlled ships to meet the challenges of network connectivity in diverse environments (e.g., ports, deep-sea, and polar regions), aiming to address the issues of insufficient coverage, limited bandwidth, and high communication latency. First, the applicability and technical characteristics of shore-based and satellite communication networks are systematically summarized, while the diverse wireless communication requirements of remotely-controlled ships operating in different water areas are comprehensively analyzed. Based on this, a satellite-shore-based integrated network architecture that fuses multiple wireless communication systems is proposed. It aims to deeply integrate satellite and shore-based networks, thereby constructing an intelligent and stable shipboard communication system. By revealing the huge application potential of the satellite-shore-based integrated network architecture, which offers economic and service quality advantages for remotely-controlled ships in complex navigation environments, and by sorting out relevant key technologies and existing bottleneck issues, the proposed integrated communication network architecture is expected to provide a theoretical reference for optimizing the communication of remotely-controlled ships under diverse network conditions.

  • [1]
    王远渊, 刘佳仑, 马枫, 等. 智能船舶远程驾驶控制技术研究现状与趋势[J]. 中国舰船研究, 2021, 16(1): 18–31. doi: 10.19693/j.issn.1673-3185.01939

    WANG Y Y, LIU J L, MA F, et al. Review and prospect of remote control intelligent ships[J]. Chinese Journal of Ship Research, 2021, 16(1): 18–31 (in Chinese). doi: 10.19693/j.issn.1673-3185.01939
    [2]
    The Maritime Executive. Seafarer labor shortage reaches 17-year high reports drewry[EB/OL]. (2023-06-08) [2024-11-18]. https://maritime-executive.com/article/seafarer-labor-shortage-reaches-17-year-high-reports-drewry.
    [3]
    International Maritime Organization. 2023 IMO strategy on reduction of GHG emissions from ships[EB/OL]. (2023-03-16) [2024-11-18]. https://www.imo.org/en/OurWork/Environment/Pages/2023-IMO-Strategy-on-Reduction-of-GHG-Emissions-from-Ships.aspx.
    [4]
    严新平. 智能船舶的研究现状与发展趋势[J]. 交通与港航, 2016, 3(1): 25–28. doi: 10.16487/j.cnki.issn2095-7491.2016.01.007

    YAN X P. Research status and development trend of intelligent ships[J]. Communication & Shipping, 2016, 3(1): 25–28 (in Chinese). doi: 10.16487/j.cnki.issn2095-7491.2016.01.007
    [5]
    TISSARI J, MAKKONEN H, JOKIOINEN E, et al. Remote and autonomous ships-the next steps[R]. London: Rolls-Royce Plc, 2016.
    [6]
    孙丹宁. 全球首艘具有远程遥控和自主航行功能的科研及实训船下水[EB/OL]. (2023-03-11) [2024-11-18]. https://news.sciencenet.cn/htmlnews/2023/12/514939.shtm.

    SUN D N. The world's first scientific research and practical training ship with remote control and autonomous navigation launched[EB/OL]. (2023-03-11) [2024-11-18]. https://news.sciencenet.cn/htmlnews/2023/12/514939.shtm (in Chinese).
    [7]
    王绪明, 申琼珍. 武汉理工大学组织研发的国内首艘内河远程控制智能船舶顺利试航[EB/OL]. (2024-10-16) [2024-11-18]. https://its.whut.edu.cn/?zhongxinxinwen/1452.html.

    WANG X M, SHEN Q Z. The first domestic inland river remote control intelligent ship organized and developed by Wuhan University of Technology successfully sails on trial[EB/OL]. (2024-10-16) [2024-11-18]. https://its.whut.edu.cn/?zhongxinxinwen/1452.html (in Chinese).
    [8]
    IMO. Maritime cyber risk management in safety management systems: MSC 428(98)[S]. London: IMO, 2017.
    [9]
    ISO. Ships and marine technology – general requirements for publish-subscribe architecture on ship-shore data communication: ISO 18131[S]. Geneva: ISO, 2024.
    [10]
    中国船级社. 船舶数字化检验数据交换技术指南: GD 21−2023[S]. 北京: 中国船级社, 2023.

    CCS. Technical guide for digital survey data exchange of ships: GD 21−2023[S]. Beijing: CCS, 2023 (in Chinese).
    [11]
    中国船级社. 船舶网络安全指南: GD 014−2024[S]. 北京: 中国船级社, 2024.

    CCS. Cyber security guidelines for ships: GD 014−2024[S]. Beijing: CCS, 2024 (in Chinese).
    [12]
    董浩, 宋亮, 化存卿, 等. 海上通信技术发展与研究综述[J]. 电信科学, 2022, 38(5): 1–17. doi: 10.11959/j.issn.1000-0801.2022087

    DONG H, SONG L, HUA C Q, et al. Survey of the research and development on the maritime communication technology[J]. Telecommunications Science, 2022, 38(5): 1–17 (in Chinese). doi: 10.11959/j.issn.1000-0801.2022087
    [13]
    VALTA M, JUTILA M, JÄMSÄ J. IEEE 802.11p and LTE as enablers of cognitive vehicle-to-infrastructure communication[C]//Proceedings of 2015 6th IEEE International Conference on Cognitive Infocommunications. Gyor: IEEE, 2015: 71−6. doi: 10.1109/CogInfoCom.2015.7390567.
    [14]
    AUST S. Measurement study of IEEE 802.11ah sub-1 GHz wireless channel performance[C]//Proceedings of 2024 IEEE 21st Consumer Communications & Networking Conference (CCNC). Las Vegas: IEEE, 2024: 847−850. doi: 10.1109/CCNC51664.2024.10454693.
    [15]
    金华标, 肖骁. 基于北斗短报文与4G的内河船载智能终端船岸通信技术[J]. 船海工程, 2021, 50(4): 67–71, 76. doi: 10.3963/j.issn.1671-7953.2021.04.015

    JIN H B, XIAO X. On ship-to-shore communication technology of inland waterway shipboard intelligent terminal based on Beidou short message and 4G[J]. Ship & Ocean Engineering, 2021, 50(4): 67–71, 76 (in Chinese). doi: 10.3963/j.issn.1671-7953.2021.04.015
    [16]
    LI X L, FENG W, WANG J, et al. Enabling 5G on the ocean: a hybrid satellite-UAV-terrestrial network solution[J]. IEEE Wireless Communications, 2020, 27(6): 116–121. doi: 10.1109/MWC.001.2000076
    [17]
    赵敏笑. 5G通信技术的船舶航行状态远程监测系统[J]. 舰船科学技术, 2021, 43(1A): 43–45. doi: 10.3404/j.issn.1672-7649.2021.1A.015

    ZHAO M X. Remote monitoring system for ship navigation status based on 5G communication technology[J]. Ship Science and Technology, 2021, 43(1A): 43–45 (in Chinese). doi: 10.3404/j.issn.1672-7649.2021.1A.015
    [18]
    汪洋, 叶挺, 李廷文, 等. 自主船舶航行系统信息空间安全: 挑战与探索[J]. 华中科技大学学报(自然科学版), 2023, 51(2): 64–76. doi: 10.13245/j.hust.230205

    WANG Y, YE T, LI T W, et al. Cyberspace security for autonomous ship navigation system: challenges and explorations[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51(2): 64–76 (in Chinese). doi: 10.13245/j.hust.230205
    [19]
    PLASS S, CLAZZER F, BEKKADAL F. Current situation and future innovations in Arctic communications[C]//Proceedings of 2015 IEEE 82nd Vehicular Technology Conference. Boston: IEEE, 2015: 1−7. doi: 10.1109/VTCFall.2015.7390883.
    [20]
    FENECH H, AMOS S, HIRSCH A, et al. VHTS systems: requirements and evolution[C]//Proceedings of 2017 11th European Conference on Antennas and Propagation. Paris: IEEE, 2017: 2409−2412. doi: 10.23919/EuCAP.2017.7928175.
    [21]
    TELESAT. Telesat Lightspeed™ LEO network[EB/OL]. (2024-03-11) [2024-11-18]. https://www.telesat.com/leo-satellites/.
    [22]
    Iridium LEO Constellation[EB/OL]. [2020-06-29] [2024-11-18]. https://www.iridium.com/network/globalnetwork/.
    [23]
    COLOMBO C. Long-term evolution of highly-elliptical orbits: luni-solar perturbation effects for stability and re-entry[J]. Frontiers in Astronomy and Space Sciences, 2019, 6: 34. doi: 10.3389/fspas.2019.00034
    [24]
    ILCEV M. New aspects for modernization global maritime distress and safety system (GMDSS)[J]. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 2020, 14(4): 991–998. doi: 10.12716/1001.14.04.26
    [25]
    封锦. 基于SDN技术的海上船舶现场通信网络架构设计[J]. 舰船科学技术, 2021, 43(14): 142–144. doi: 10.3404/j.issn.1672-7649.2021.7A.048

    FENG J. Design of on-site communication network architecture for marine vessels based on SDN technology[J]. Ship Science and Technology, 2021, 43(14): 142–144 (in Chinese). doi: 10.3404/j.issn.1672-7649.2021.7A.048
    [26]
    马文静, 张超超, 赵文豪, 等. 面向5G网络虚拟化技术的安全研究[J]. 信息技术与标准化, 2024(9): 51–56. doi: 10.3969/j.issn.1671-539X.2024.09.017

    MA W J, ZHANG C C, ZHAO W H, et al. Security research on 5G network virtualization technologies[J]. Information Technology & Standardization, 2024(9): 51–56 (in Chinese). doi: 10.3969/j.issn.1671-539X.2024.09.017
    [27]
    代燕. 基于船联网的MILK-RUN船舶运输调度系统研究[J]. 舰船科学技术, 2017, 39(22): 28–30.

    DAI Y. Research on MILK-RUN ship transportation scheduling system based on ship networking[J]. Ship Science and Technology, 2017, 39(22): 28–30 (in Chinese).
    [28]
    刘云璐, 杨光, 杨宁, 等. 面向5G的多网融合研究[J]. 电信科学, 2015, 31(5): 63–67. doi: 10.11959/j.issn.1000-0801.2015114

    LIU Y L, YANG G, YANG N, et al. Study on multi-RAT coordination in 5G[J]. Telecommunications Science, 2015, 31(5): 63–67 (in Chinese). doi: 10.11959/j.issn.1000-0801.2015114
    [29]
    郑亮, 严彬. 基于SDN/NFV的海军虚拟军事信息网络构建方法[J]. 舰船电子工程, 2016, 36(8): 123–126. doi: 10.3969/j.issn.1672-9730.2016.08.030

    ZHENG L, YAN B. Struction means in the navy virtual information network based on SDN/NFV technology[J]. Ship Electronic Engineering, 2016, 36(8): 123–126 (in Chinese). doi: 10.3969/j.issn.1672-9730.2016.08.030
    [30]
    蒋欣秀, 常俊, 李波, 等. 面向海洋节能边缘计算的任务卸载研究[J]. 计算机工程与科学, 2022, 44(9): 1563–1573. doi: 10.3969/j.issn.1007-130X.2022.09.006

    XIN X X, JUN C, LI B, et al. Research on task unloading for marine energy-saving edge computing[J]. Computer Engineering and Science, 2022, 44(9): 1563–1573 (in Chinese). doi: 10.3969/j.issn.1007-130X.2022.09.006
    [31]
    姜俊颖. 基于5G通信技术的船舶网络系统设计[J]. 舰船科学技术, 2022, 44(23): 169–172. doi: 10.3404/j.issn.1672-7649.2022.23.035

    JIANG J Y. Design of ship network system based on 5G communication technology[J]. Ship Science and Technology, 2022, 44(23): 169–172 (in Chinese). doi: 10.3404/j.issn.1672-7649.2022.23.035
    [32]
    ZADA M, SHAH I A, YOO H. Integration of sub-6-GHz and mm-wave bands with a large frequency ratio for future 5G MIMO applications[J]. IEEE Access, 2021, 9: 11241–11251. doi: 10.1109/ACCESS.2021.3051066
    [33]
    ALI S A, WAJID M, KUMAR A, et al. Design challenges and possible solutions for 5G SIW MIMO and phased array antennas: a review[J]. IEEE Access, 2022, 10: 88567–88594. doi: 10.1109/ACCESS.2022.3197226
    [34]
    LI X L, FENG W, WANG J, et al. Enabling 5G on the ocean: a hybrid satellite-UAV-terrestrial network solution[J]. IEEE Wireless Communications, 2020, 27(6): 116-121. doi: 10.1109/MWC.001.2000076.
    [35]
    陈立家, 周为, 许毅, 等. 一种基于SDN的多约束无人船网络传输路由算法[J]. 中国舰船研究, 2022, 17(4): 107–113. doi: 10.19693/j.issn.1673-3185.02454

    CHEN L J, ZHOU W, XU Y, et al. Multi-constrained unmanned surface vessel network transmission routing algorithm based on SDN[J]. Chinese Journal of Ship Research, 2022, 17(4): 107–113 (in both Chinese and English). doi: 10.19693/j.issn.1673-3185.02454
    [36]
    ALOTAIBI A, BARNAWI A. IDSoft: a federated and softwarized intrusion detection framework for massive internet of things in 6G network[J]. Journal of KingSaud University - Computer and Information Sciences, 2023, 35(6): 101575. doi: 10.1016/j.jksuci.2023.101575
    [37]
    ZHANG C C, WANG X W, DONG A W, et al. Energy efficient network service deployment across multiple SDN domains[J]. Computer Communications, 2020, 151: 449–462. doi: 10.1016/j.comcom.2020.01.019
    [38]
    QU K G, ZHUANG W H, YE Q, et al. Dynamic flow migration for embedded services in SDN/NFV-enabled 5G core networks[J]. IEEE Transactions on Communications, 2020, 68(4): 2394–2408. doi: 10.1109/TCOMM.2020.2968907
    [39]
    IBRAHIM A A Z, HASHIM F, NOORDIN N K, et al. Heuristic resource allocation algorithm for controller placement in multi-control 5G based on SDN/NFV architecture[J]. IEEE Access, 2021, 9: 2602–2617. doi: 10.1109/ACCESS.2020.3047210
    [40]
    SINGH J, REFAEY A, SHAMI A. Multilevel security framework for nfv based on software defined perimeter[J]. IEEE Network, 2020, 34(5): 114–119. doi: 10.1109/MNET.011.1900563
    [41]
    包寅盛, 卓磊, 曹昊, 等. 5G MEC大型船舶智慧引航应用[J]. 中国仪器仪表, 2021(2): 19–21.

    BAO Y S, ZHUO L, CAO H, et al. Application of 5G MEC large ship intelligent pilotage[J]. China Instrumentation, 2021(2): 19–21 (in Chinese).
    [42]
    WU Z Y, YAN D F. Deep reinforcement learning-based computation offloading for 5G vehicle-aware multi-access edge computing network[J]. China Communications, 2021, 18(11): 26–41. doi: 10.23919/JCC.2021.11.003
    [43]
    SHAH S D A, GREGORY M A, LI S, et al. SDN enhanced multi-access edge computing (MEC) for E2E mobility and QoS management[J]. IEEE Access, 2020, 8: 77459–77469. doi: 10.1109/ACCESS.2020.2990292

Catalog

    Article views (624) PDF downloads (74) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return