Geng Shaojuan, Ni Ming, Ding Linchao, Wang Wentao, Zhang Xiaoyu. Aerodynamic design and strength check of a two-stage dual-rotor opposed centrifugal compressor[J]. Chinese Journal of Ship Research, 2019, 14(4): 111-119. DOI: 10.19693/j.issn.1673-3185.01453
Citation: Geng Shaojuan, Ni Ming, Ding Linchao, Wang Wentao, Zhang Xiaoyu. Aerodynamic design and strength check of a two-stage dual-rotor opposed centrifugal compressor[J]. Chinese Journal of Ship Research, 2019, 14(4): 111-119. DOI: 10.19693/j.issn.1673-3185.01453

Aerodynamic design and strength check of a two-stage dual-rotor opposed centrifugal compressor

More Information
  • Received Date: September 29, 2018
  • Available Online: May 07, 2021
© 2019 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  To accomplish the design of a two-stage dual-rotor opposed centrifugal compressor for a small gas turbine,
      Methods  the compressor is subject to aerodynamic design and three-dimensional flow field check by using the software Concepts NREC and the Numeca. The impeller is made of 0Cr17Ni4Cu4Nb. The strength and vibration characteristics of the centrifugal impeller are analyzed and checked with the ANSYS within the linear elasticity range.
      Results  The aerodynamic design results show that the total pressure ratio of the two-stage centrifugal compressor at design mass flow rate is 7.97, the adiabatic efficiency is 80.39% and the stability margin is 17.2%. The results of strength and vibration analysis show that the impeller strength meets material strength requirements. According to the "triple point" resonance theory, there are no risks of resonance vibration for the two-stage centrifugal impellers.
      Conclusions  A design scheme for the two-stage centrifugal compressor with high pressure ratio, high efficiency and wide stability margin is obtained, the compressor meeting the requirements for aerodynamics, strength and vibration, which can provide some fundamental support for the design, technology integration and test of a small gas turbine.
  • [1]
    Skoch G J, Prahst P S, Wernet M P, et al. Laser anemometer measurements of the flow field in a 4: 1 pressure ratio centrifugal impeller: ARL-TR-1448[R]. Ohio, USA: Army Research Laboratory, Lewis Research Center, 1997.
    [2]
    McKain T F, Holbrook G J. Coordinate for a high performance 4: 1 pressure ratio centrifugal compressor: NASA 204134[R]. Indiana, USA: Detroit Diesel Allison, 1997.
    [3]
    Ziegler K U, Gallus H E, Niehuis R. A study on impeller-diffuser interaction, part I:influence on the performance[J]. Journal of Turbomachinery, 2003, 125(1):173-182. doi: 10.1115/1.1516814
    [4]
    Ziegler K U, Gallus H E, Niehuis R. A study on impeller-diffuser interaction, part Ⅱ:detailed flow analysis[J]. Journal of Turbomachinery, 2003, 125(1):183-192. doi: 10.1115/1.1516815
    [5]
    Palmer D L, Waterman W F. Design and development of an advanced two-stage centrifugal compressor[J]. Journal of Turbomachinery, 1995, 117(2):205-212. doi: 10.1115/1.2835648
    [6]
    Backman J L H, Turunen-Saaresti T, Saari J. Prototype design of a two-stage high-speed motor driven air compressor[C]//Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air. Berlin, Germany: ASME, 2008.
    [7]
    Rodgers C, Brown D. Performance test diagnosis of a compact two stage high pressure ratio compressor[C]//Proceedings of ASME Turbo Expo 2010: Power for Land, Sea and Air. Glasgow, UK: ASME, 2010.
    [8]
    韩戈, 卢新根, 赵胜丰, 等.喉部长度和扩张角对离心压气机管式扩压器影响研究[J].推进技术, 2014, 35(12):1607-1614. http://d.old.wanfangdata.com.cn/Periodical/tjjs201412005

    Han G, Lu X G, Zhao S F, et al. Effects of diffuser throat length and divergence angle on performance of centrifugal compressor with pipe diffuser[J]. Journal of Propulsion Technology, 2014, 35(12):1607-1614(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/tjjs201412005
    [9]
    Veress A Á, Van Den Braembussche R. Inverse design and optimization of a return channel for a multistage centrifugal compressor[J]. Journal of Fluids Engineering, 2004, 126(5):799-806. doi: 10.1115/1.1792258
    [10]
    鲁业明, 刘正先.离心压气机弯道和回流器流道的优化设计[J].流体机械, 2014, 42(4):17-22. doi: 10.3969/j.issn.1005-0329.2014.04.004

    Lu Y M, Liu Z X. Optimization design of curved and return channel of centrifugal compressor[J]. Fluid Machinery, 2014, 42(4):17-22(in Chinese). doi: 10.3969/j.issn.1005-0329.2014.04.004
    [11]
    高星, 刘宝杰.双级离心压气机回流器流动特点分析[J].航空动力学报, 2009, 24(2):432-438. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb200902031

    Gao X, Liu B J. Analysis of the flow in return vanes of a two-stage centrifugal compressor[J]. Journal of Aerospace Power, 2009, 24(2):432-438(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkdlxb200902031
    [12]
    Krain H. Review of centrifugal compressor's application and development[J]. Journal of Turbomachinery, 2005, 127(1):25-34. doi: 10.1115/1.1791280
    [13]
    张学锋, 卢新根, 韩戈, 等.高压比离心压气机设计及试验验证[J].燃气轮机技术, 2014, 27(4):31-36. doi: 10.3969/j.issn.1009-2889.2014.04.006

    Zhang X F, Lu X G, Han G, et al. Design and experimental validation of a high pressure ratio centrifugal compressor[J]. Gas Turbine Technology, 2014, 27(4):31-36(in Chinese). doi: 10.3969/j.issn.1009-2889.2014.04.006
    [14]
    谢卫红, 周进, 王毅.高压比离心压气机气动特性研究[J].机械工程与自动化, 2018(2):32-34, 37. doi: 10.3969/j.issn.1672-6413.2018.02.012

    Xie W H, Zhou J, Wang Y. Research on aerodynamic characteristics of high-pressure-ratio centrifugal compressor[J]. Mechanical Engineering & Automation, 2018(2):32-34, 37(in Chinese). doi: 10.3969/j.issn.1672-6413.2018.02.012
    [15]
    王晓春, 葛炜, 卞尔保, 等.新型两级离心压气机设计及内部流场分析[J].车用发动机, 2013(5):33-38. doi: 10.3969/j.issn.1001-2222.2013.05.007

    Wang X C, Ge W, Bian E B, et al. Design and internal-flow field analysis of new two-stage centrifugal compressor[J]. Vehicle Engine, 2013(5):33-38(in Chinese). doi: 10.3969/j.issn.1001-2222.2013.05.007
    [16]
    王永生.离心压 气机气动设计程序开发及应用[D].北京: 中国科学院研究生院(工程热物理研究所), 2014.

    Wang Y S. Development and application of aerodynamic design program for centrifugal compressors[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2014(in Chinese). 气机气动设计程序开发及应用
    [17]
    吴世勋.双级离心压气机气动分析与优化设计[D].北京: 中国科学院研究生院(工程热物理研究所), 2012. http://cdmd.cnki.com.cn/Article/CDMD-80135-1013296016.htm

    Wu S X. Aerodynamic analysis and optimum design of two-stage centrifugal compressor[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2012(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-80135-1013296016.htm
    [18]
    邵冬.双轴离心压气机实验关键技术研究[D].北京: 中国科学院研究生院(工程热物理研究所), 2017. http://cdmd.cnki.com.cn/Article/CDMD-80135-1017085865.htm

    Shao D. Investigation on key technologies of dual-spool centrifugal compressor experiment[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2017(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-80135-1017085865.htm
  • Related Articles

    [1]ZHANG Xiaoyang, CHEN Xuanyu, LI Liangcai, REN Huan. Aerodynamic design and numerical simulation of mixed-axial flow multi-stage compressor[J]. Chinese Journal of Ship Research, 2018, 13(4): 104-110, 126. DOI: 10.19693/j.issn.1673-3185.00994
    [2]QUAN Chongren, WANG Yang, YU Liqing, CHEN Qian, XIE Junlong. 舰船典型舱室气流组织数值模拟[J]. Chinese Journal of Ship Research, 2015, 10(6): 107-113. DOI: 10.3969/j.issn.1673-3185.2015.06.016
    [3]HAO Jinyu, ZHANG Xiaobin, YANG Yuanlong. 船用蒸汽蓄热器放汽过程动态特性数值模拟[J]. Chinese Journal of Ship Research, 2015, 10(3): 98-101,107. DOI: 10.3969/j.issn.1673-3185.2015.03.016
    [4]XUN Zhenyu, YANG Yuanlong, WANG Xinggang, CHENG Xiaoliang, ZHANG Xiaobin. 两种充汽模式下船用蒸汽蓄热器动态性能数值模拟[J]. Chinese Journal of Ship Research, 2014, 9(6): 110-114. DOI: 10.3969/j.issn.1673-3185.2014.06.019
    [5]SUN Changjiang, YANG Yuanlong, WANG Xinggang, LI Liangcai, CAI Lin. 不同运行条件下船用蒸汽蓄热器充汽过程动态特性数值模拟[J]. Chinese Journal of Ship Research, 2014, 9(5): 105-109. DOI: 10.3969/j.issn.1673-3185.2014.05.017
    [6]GUO Ang, GUO Wei jie, WANG Chiming, FENG Haibao. 船舶机舱机械通风数值模拟分析和优化设计[J]. Chinese Journal of Ship Research, 2014, 9(3): 93-98. DOI: 10.3969/j.issn.1673-3185.2014.03.014
    [7]LI Weiguang, LI Anbang, XU Xinhua, SHI Hongmei. 基于数值模拟的复杂船舶围壁传热计算[J]. Chinese Journal of Ship Research, 2013, 8(6): 85-90. DOI: 10.3969/j.issn.1673-3185.2013.06.015
    [8]HE Qinglin, LU Jing, YANG Dapeng. 舰载飞机发动机尾流场数值模拟[J]. Chinese Journal of Ship Research, 2013, 8(5): 13-18,51. DOI: 10.3969/j.issn.1673-3185.2013.05.003
    [9]Yang Wenlin, Peng Weicai, Zhang Junjie. 非消声水池声强法声功率测试的数值模拟[J]. Chinese Journal of Ship Research, 2012, 7(2): 91-96. DOI: 10.3969/j.issn.1673-3185.2012.02.017
    [10]Qu Fei, Lu Chao, Jiang Zhifang, Wang Tao. 舰船舰面空气流场的CFD数值模拟探讨[J]. Chinese Journal of Ship Research, 2009, 4(5): 23-27. DOI: 10.3969/j.issn.1673-3185.2009.05.005
  • Other Related Supplements

  • Cited by

    Periodical cited type(3)

    1. 刘淑军,杨一楠. 高压比大推力离心压气机流场分析. 液压气动与密封. 2024(03): 67-72 .
    2. 倪明,耿少娟,张宏武,王永生. 两级对置式离心压气机湿压缩研究. 推进技术. 2020(05): 1000-1014 .
    3. 倪明,耿少娟,张小玉,张宏武. 空气湿度对舰用燃气轮机两级对置式离心压气机性能的影响. 舰船科学技术. 2020(19): 110-117 .

    Other cited types(3)

Catalog

    Article views (610) PDF downloads (101) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return