He Jiawei, Zhao Weiwen, Wan Decheng. Numerical simulation of vertex induced motion for Spar platform with helical strakes[J]. Chinese Journal of Ship Research, 2019, 14(4): 74-84. DOI: 10.19693/j.issn.1673-3185.01280
Citation: He Jiawei, Zhao Weiwen, Wan Decheng. Numerical simulation of vertex induced motion for Spar platform with helical strakes[J]. Chinese Journal of Ship Research, 2019, 14(4): 74-84. DOI: 10.19693/j.issn.1673-3185.01280

Numerical simulation of vertex induced motion for Spar platform with helical strakes

More Information
  • Received Date: May 05, 2018
  • Available Online: June 25, 2021
© 2019 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  Long-lasting Vortex Induced Motion(VIM)may cause the Spar platform mooring system fatigue and even the structure damage. Therefore, the adverse effects of VIM must be fully taken into account.
      Methods  In this paper, the CFD solver naoe-FOAM-SJTU and dynamic grid method developed by ourselves are used to make numerical simulation of the characteristics of the vortex induced flow field around the Spar platform. The time Delayed Detached-Eddy Simulation(DDES) turbulence model based on shear-transport-stress equation is used to simulate the three-dimensional fine wake vortex structure of the Spar platform with helical strakes. The longitudinal motion, transverse motion and yawing of the Spar platform with helical strakes at different reduced velocities are studied. The platform mooring system is stimulated by using the linear spring system. The research also takes into account the effects that the platform coupling effect at different degrees has on VIM. Then the numerical simulation results are compared with the model test results, to analyze the time history, spectral characteristics and locking of longitudinal and transverse VIM of Spar platform with helical strakes and to reveal the intrinsic mechanism of VIM.
      Results  The results show that the helical strakes can effectively reduce the response amplitude of Spar platform's VIM; the CFD solver naoe-FOAM-SJTU has good accuracy and reliability for the calculation and simulation of the offshore platforms' VIM.
      Conclusions  The numerical simulation and analysis of the VIM of Spar platform with helical strakes is of great significance to the practical design of Spar platform.
  • [1]
    张辉, 王慧琴, 王宝毅.国外SPAR平台现状与发展趋势[J].石油工程建设, 2011, 37(增刊1):1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-SYGJ2011S1002.htm

    Zhang H, Wang H Q, Wang B Y. Current status of overseas SPAR and its development prospect[J]. Petroleum Engineering Construction, 2011, 37(Supp 1):1-7(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-SYGJ2011S1002.htm
    [2]
    Finnigan T, Irani M, Van Dijk R. Truss Spar VIM in waves and currents[C]//24th International Conference on Offshore Mechanics and Arctic Engineering. Halkidiki, Greece: ASME, 2005: 475-482.
    [3]
    Finnigan T, Roddier D. Spar VIM model tests at supercritical Reynolds numbers[C]//26th International Conference on Offshore Mechanics and Arctic Engineering. San Diego, California, USA: ASME, 2007: 731-740.
    [4]
    赵伟文, 万德成.用大涡模拟方法数值模拟Spar平台涡激运动问题[J].水动力学研究与进展(A辑), 2015, 30(1):40-46. http://d.old.wanfangdata.com.cn/Periodical/sdlxyjyjz201501006

    Zhao W W, Wan D C. Numerical investigation of vor-tex-induced motions of Spar platform based on large eddy simulation[J]. Chinese Journal of Hydrodynamics (Ser. A), 2015, 30(1):40-46(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/sdlxyjyjz201501006
    [5]
    Lefevre C, Constantinides Y, Kim J W, et al. Guidelines for CFD simulations of Spar VIM[C]//32nd International Conference on Ocean, Offshore and Arctic Engineering. Nantes, France: ASME, 2013: V007T08A019.
    [6]
    单铁兵, 李曼. Spar平台涡激运动的数值模拟[J].船舶, 2018, 29(4):1-8. http://d.old.wanfangdata.com.cn/Periodical/cb201804001

    Shan T B, Li M. Numerical simulation of vortex induced motion of Spar platform[J]. Ship & Boat, 2018, 29(4):1-8.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/cb201804001
    [7]
    Beattie M, Prislin I, Yiu F, et al. Truss Spar VIM correlation between model test and field measurement[C]//Offshore Technology Conference. Houston, Texas, USA: OTC, 2013: 1-16.
    [8]
    成欣, 叶舟, 丁勤卫, 等.螺旋侧板对漂浮式风力机动态响应的影响研究[J].太阳能学报, 2016, 37(5):1139-1147. doi: 10.3969/j.issn.0254-0096.2016.05.009

    Cheng X, Ye Z, Ding Q W, et al. Influence study on dynamic responses of helical strake for floating wind turbines[J]. Acta Energiae Solaris Sinica, 2016, 37(5):1139-1147(in Chinese). doi: 10.3969/j.issn.0254-0096.2016.05.009
    [9]
    张楠, 李春, 丁勤卫, 等.螺旋侧板截面形状对Spar平台涡激运动的影响研究[J].水资源与水工程学报, 2017, 28(3):105-109. http://d.old.wanfangdata.com.cn/Periodical/xbszyysgc201703020

    Zhang N, Li C, Ding Q W, et al. Study on the influence of section shape of helical strakes on the vortex-induced motions of Spar platform[J]. Journal of Water Resources and Water Engineering, 2017, 28(3):105-109(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xbszyysgc201703020
    [10]
    孙洪源, 黄维平, 李磊, 等.基于实验的浮式圆柱体涡激运动研究[J].振动与冲击, 2017, 36(3):93-97. http://d.old.wanfangdata.com.cn/Periodical/zdycj201703015

    Sun H Y, Huang W P, Li L, et al. Tests for vortex induced motions of a floating cylinder[J]. Journal of Vibration and Shock, 2017, 36(3):93-97(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zdycj201703015
    [11]
    Van Dijk R, Magee A, Van Perryman S, et al. Model test experience on vortex induced vibrations of truss Spars[C]//Offshore Technology Conference. Houston, Texas: OTC, 2003.
    [12]
    刘明月.深吃水半潜式平台绕流场及涡激运动特性研究[D].上海: 上海交通大学, 2016. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D01185893

    Liu M Y. Research on the flow characteristics and vortex-induced motions of deep-draft semi-submersibles[D]. Shanghai: Shanghai Jiao Tong Universuity, 2016(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D01185893
    [13]
    Thiagarajan K P, Constantinides Y, Finn L. CFD analysis of vortex-induced motions of bare and straked cylinders in currents[C]//24th International Conference on Offshore Mechanics and Arctic Engineering. Halkidiki, Greece: ASME, 2005: 903-908.
    [14]
    Zhao W W, Wan D C. Detached-eddy simulation of flow past tandem cylinders[J]. Applied Mathematics and Mechanics, 2016, 37(12):1272-1281. http://d.old.wanfangdata.com.cn/Periodical/yysxhlx201612003
    [15]
    Atluri S, Halkyard J, Sirnivas S. CFD simulation of truss Spar vortex-induced motion[C]//25th International Conference on Offshore Mechanics and Arctic Engineering. Hamburg, Germany: ASME, 2006: 787-793.
    [16]
    Bearman P, Brankovi M. Experimental studies of passive control of vortex-induced vibration[J]. European Journal of Mechanics-B/Fluids, 2004, 23(1):9-15. doi: 10.1016/j.euromechflu.2003.06.002
  • Related Articles

    [1]LIANG Yunzhi, LONG Yun, LONG Xinping, CHENG Huaiyu. Verification and validation of large eddy simulation of cavitating flow in Venturi[J]. Chinese Journal of Ship Research, 2022, 17(3): 196-204. DOI: 10.19693/j.issn.1673-3185.02607
    [2]ZHOU Li, QIU Zhongqiu, YUAN Yashuai, ZONG Zhi. Vortex-induced vibration of cylinder under sub-critical Reynolds number[J]. Chinese Journal of Ship Research, 2022, 17(3): 145-152. DOI: 10.19693/j.issn.1673-3185.02694
    [3]CHEN Songtao, ZHAO Weiwen, WAN Decheng, GAO Yangyang. Numerical simulation of flows around a finite-length cylinder with free surface[J]. Chinese Journal of Ship Research, 2022, 17(1): 91-98. DOI: 10.19693/j.issn.1673-3185.02274
    [4]LIU Qi, XIE Chengli, LI Weiguang, LIU Wenchuan, LONG Xinping. Large eddy simulation of contaminants dispersion in ship isolation room[J]. Chinese Journal of Ship Research, 2021, 16(3): 67-73. DOI: 10.19693/j.issn.1673-3185.01900
    [5]Li Ya, Liu Zhongzu, Xu Yingbo, Zhang Nan. Large eddy simulation of the flow field in centrifugal fan and numerical prediction of noise in pipe[J]. Chinese Journal of Ship Research, 2019, 14(4): 91-97, 154. DOI: 10.19693/j.issn.1673-3185.01401
    [6]DENG Di, WANG Zhe, WAN Decheng. Numerical simulation of vortex-induced vibration of a 2D cylinder in oscillatory flow[J]. Chinese Journal of Ship Research, 2018, 13(S1): 7-14. DOI: 10.19693/j.issn.1673-3185.01279
    [7]YUAN Shusheng, DING Weifeng, ZHAO Yuanli. Large eddy simulation of fire suppression in ship meeting room with water mist extinguishing system[J]. Chinese Journal of Ship Research, 2016, 11(5): 120-127. DOI: 10.3969/j.issn.1673-3185.2016.05.018
    [8]CAO Ge, CHENG Jie, BI Xiaobo, ZHANG Zhiguo, WANG Xianzhou. Investigation on the numerical simulation of ship airwake based on DES[J]. Chinese Journal of Ship Research, 2016, 11(3): 48-54. DOI: 10.3969/j.issn.1673-3185.2016.03.009
    [9]WANG Kang, LIU Guoqing, WANG Qiang, ZHANG Yongou, LI Xu. 水下航行器水动力噪声分离预报[J]. Chinese Journal of Ship Research, 2015, 10(4): 29-38. DOI: 10.3969/j.issn.1673-3185.2015.04.005
    [10]Gao Yun, Zong Zhi, Zhou Li, Cao Jing. Analysis of Vortex Induced Vibration Fatigue Damage of Steel Catenary Riser[J]. Chinese Journal of Ship Research, 2010, 5(5): 54-58,63. DOI: 10.3969/j.issn.1673-3185.2010.05.011
  • Cited by

    Periodical cited type(5)

    1. 曹辰泽,何炎平,王梓,刘亚东. 深吃水圆筒型浮式核能平台涡激运动数值模拟. 船舶力学. 2024(02): 239-249 .
    2. 曹辰泽,何炎平,王梓,刘亚东. 扰流板对深吃水圆筒型平台涡激运动的抑制效果研究. 舰船科学技术. 2023(11): 106-112 .
    3. 宋佳奇,王俊荣,王德志,康信龙. Spar风电平台涡激运动特性研究. 海岸工程. 2022(01): 37-47 .
    4. 郭涵慧,赵伟文,万德成. 分隔板对Spar平台涡激运动响应影响的分析研究. 海洋工程. 2022(06): 11-20 .
    5. 张晨雅,寇雨丰,吕海宁,肖龙飞,刘明月. 经典式Spar平台涡激运动与驰振特性的对比试验. 上海交通大学学报. 2021(05): 497-504 .

    Other cited types(3)

Catalog

    Article views (561) PDF downloads (70) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return