ZENG L, HAN H Q, PAN Z, et al. Investigation of the influence of vortex-generator array on vibration and noise reduction of pump-jet propeller[J]. Chinese Journal of Ship Research, 2025, 20(X): 1–10 (in Chinese). DOI: 10.19693/j.issn.1673-3185.04449
Citation: ZENG L, HAN H Q, PAN Z, et al. Investigation of the influence of vortex-generator array on vibration and noise reduction of pump-jet propeller[J]. Chinese Journal of Ship Research, 2025, 20(X): 1–10 (in Chinese). DOI: 10.19693/j.issn.1673-3185.04449

Investigation of the influence of vortex-generator array on vibration and noise reduction of pump-jet propeller

More Information
  • Received Date: April 08, 2025
  • Revised Date: May 18, 2025
  • Official website online publication date: May 18, 2025
© 2025 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • Objectives 

    To effectively suppress the enhancement of circumferential inhomogeneity and flow unsteadiness in propeller wake fields caused by the downstream evolution of horseshoe vortices at underwater vehicle tail fins, this study proposes a vortex-generator array design. The proposed configuration aims to achieve hydrodynamic noise suppression and improve vehicle stealth performance through targeted flow control.

    Methods 

    First, the present work are performed on the SUBOFF standard submarine configuration and a pump-jet propeller, a refined flow field simulation was conducted using the finite volume method (FVM) and an improved delayed detached-eddy simulation (IDDES) turbulence model, establishing a high-precision numerical model for low-frequency excitation forces of underwater vehicle thrusters. The model was validated against published experimental data, showing an error margin < 4%. Second, the vibration reduction and acoustic suppression effects were evaluated by comparing the vortex-generator-equipped scheme with the basic scheme through excitation force and noise analyses, with the mechanism explained from the perspective of flow field evolution. Subsequently, multiple VGA configurations with varying numbers of vortex generators were simulated to optimize their quantity. Finally, high-speed simulations were performed to investigate the speed dependency of the VGA's vibration and noise reduction performance.

    Results 

    The results show that the vortex-generators demonstrated significant vibration and noise reduction effects. The optimal scheme achieved a 68.56% reduction in the first blade-passing frequency (BPF) peak of rotor excitation forces, while the far-field radiated noise decreased by 1.81 dB in the transverse plane and 2.84 dB in the horizontal plane at a 1 m equivalent sound pressure level.

    Conclusions 

    The vortex-generator array effectively improves the wake field by segmenting large-scale vortex structures, thereby mitigating thruster vibration and noise. The number of vortex generators should be optimized rather than maximized, and the performance remains stable at high speeds. This study provides a novel approach for reducing noise in underwater vehicle thrusters.

  • [1]
    BARBERIS D, MOLTON P, MALATERRE T. Control of 3D turbulent boundary layer separation caused by a wing-body junction[J]. Experimental Thermal and Fluid Science, 1998, 16(1-2): 54–63. doi: 10.1016/S0894-1777(97)10012-7
    [2]
    张华, 吕志咏. 后掠翼身干扰区流动特性及改善措施研究[J]. 北京航空航天大学学报, 2000, 26(5): 592–595. doi: 10.3969/j.issn.1001-5965.2000.05.025

    ZHANG H, LÜ Z Y. Flow characteristics and its melioration of swept wing/body interference[J]. Journal of Beijing University of Aeronautics and Astronautics, 2000, 26(5): 592–595 (in Chinese). doi: 10.3969/j.issn.1001-5965.2000.05.025
    [3]
    KANG K J, KIM T, SONG S J. Strengths of horseshoe vortices around a circular cylinder with an upstream cavity[J]. Journal of Mechanical Science and Technology, 2009, 23(7): 1773–1778. doi: 10.1007/s12206-009-0602-2
    [4]
    刘志华, 熊鹰. 消涡整流片对潜艇马蹄涡的控制及其与辅翼效果的比较[J]. 船舶力学, 2011, 15(10): 1102–1109. doi: 10.3969/j.issn.1007-7294.2011.10.005

    LIU Z H, XIONG Y. Comparison on the submarine horseshoe vortex control effects by vortex control bafflers and fillets[J]. Journal of Ship Mechanics, 2011, 15(10): 1102–1109 (in Chinese). doi: 10.3969/j.issn.1007-7294.2011.10.005
    [5]
    DEVENPORT W J, AGARWAL N K, DEWITZ M B, et al. Effects of a fillet on the flow past a wing-body junction[J]. AIAA Journal, 1990, 28(12): 2017–2024. doi: 10.2514/3.10517
    [6]
    祝魁. 角区马蹄涡控制方法的研究[D]. 沈阳: 沈阳航空航天大学, 2013.

    ZHU K. Study of control of the juncture horseshoe vortices[D]. Shenyang: Shenyang Aerospace University, 2013 (in Chinese).
    [7]
    李健, 张华, 吴星钢. 利用上游槽道对角区马蹄涡的控制[J]. 航空学报, 2017, 38(6): 120796. doi: 10.7527/S1000-6893.2016.0304

    LI J, ZHANG H, WU X G. Junction flow horseshoe vortex control based on upstream cavity[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 120796 (in Chinese). doi: 10.7527/S1000-6893.2016.0304
    [8]
    钱晨程, 张景新. 截面形状对局部马蹄涡影响的数值研究[J]. 水动力学研究与进展(A辑), 2018, 33(5): 601–608. doi: 10.16076/j.cnki.cjhd.2018.05.008

    QIAN C C, ZHANG J X. Numerical investigations of the horse-shoe vortex with different pier section shapes[J]. Chinese Journal of Hydrodynamics, 2018, 33(5): 601–608 (in Chinese). doi: 10.16076/j.cnki.cjhd.2018.05.008
    [9]
    LIU Y W, JIANG H X, LI Y L, et al. Suppression of the hydrodynamic noise induced by the horseshoe vortex through mechanical vortex generators[J]. Applied Sciences, 2019, 9(4): 737. doi: 10.3390/app9040737
    [10]
    黄磊. 阵列式涡流发生器对角区马蹄涡的影响研究[D]. 大连: 大连理工大学, 2023.

    HUANG L. Investigation of the influence of vortex-generator array on horseshoe vortices[D]. Dalian: Dalian University of Technology, 2023 (in Chinese).
    [11]
    李定远, 方斌, 李一鸣, 等. 涡流发生器对翼板结合部流噪声的控制机理研究[J]. 兵工学报, 2023, 44(8): 2404–2413. doi: 10.12382/bgxb.2022.0389

    LI D Y, FANG B, LI Y M, et al. Control mechanism of vortex generator to the flow noise of wing-plate junction[J]. Acta Armamentarii, 2023, 44(8): 2404–2413 (in Chinese). doi: 10.12382/bgxb.2022.0389
    [12]
    李孟捷, 江国金, 熊传志. 水下航行体两种降噪艉附体形式的应用研究[J]. 中国舰船研究, 2013, 8(1): 26–31. doi: 10.3969/j.issn.1673-3185.2013.01.005

    LI M J, JIANG G J, XIONG C Z. Applications of two types of denoising stern appendages on underwater vehicles[J]. Chinese Journal of Ship Research, 2013, 8(1): 26–31 (in Chinese). doi: 10.3969/j.issn.1673-3185.2013.01.005
    [13]
    XIONG Z Y, RUI W, LU L Z, et al. Experimental investigation of broadband thrust and loading noise from pumpjet due to turbulence ingestion[J]. Ocean Engineering, 2022, 255: 111408. doi: 10.1016/j.oceaneng.2022.111408
  • Related Articles

    [1]TIAN Chang, XIA Linsheng, FU Minfei, LIANG Ning, QIN Shijie, CAO Linlin, WU Dazhuan. Influence of wake field on propeller exciting force of submarine[J]. Chinese Journal of Ship Research, 2023, 18(3): 111-121. DOI: 10.19693/j.issn.1673-3185.02696
    [2]GU Zheng, LIU Jinlin, ZHOU Ruiping, FANG Shiyu, ZHANG Rongguo, LIN Cunming. Long marine shafting alignment and optimization considering propeller hydrodynamic force in wake field[J]. Chinese Journal of Ship Research, 2023, 18(2): 243-250. DOI: 10.19693/j.issn.1673-3185.02662
    [3]Wang Shiyang, Tang Jiamin, Wang Wenquan, Zhang Xiangrui. Numerical prediction of propeller excitation force and hydrodynamic noise of submarine with propeller[J]. Chinese Journal of Ship Research, 2019, 14(1): 43-51. DOI: 10.19693/j.issn.1673-3185.01302
    [4]WU Xingyu, JI Gang, ZHOU Qidou, HUANG Zhenwei. Analysis of vibration and acoustic radiation of submarines under transfer modes of propeller excitation force[J]. Chinese Journal of Ship Research, 2016, 11(6): 90-96. DOI: 10.3969/j.issn.1673-3185.2016.06.014
    [5]PENG Weicai, LIU Yan, SHUAI Changgeng, WANG Suoquan. Measurement of the three-dimensional exciting force from vibration sources for machinery[J]. Chinese Journal of Ship Research, 2016, 11(3): 79-82. DOI: 10.3969/j.issn.1673-3185.2016.03.014
    [6]YU Qiang, WANG Lei, LIU Wei. 舰船推进轴系的螺旋桨激励力传递特性[J]. Chinese Journal of Ship Research, 2015, 10(6): 81-86,94. DOI: 10.3969/j.issn.1673-3185.2015.06.012
    [7]GUO Chunyu, ZHANG Qi, CHEN Ge, WANG Lianzhou. 基于SDM方法的船艉伴流场尺度效应研究与修正[J]. Chinese Journal of Ship Research, 2015, 10(6): 1-7. DOI: 10.3969/j.issn.1673-3185.2015.06.001
    [8]TAN Lu, JI Gang. Analysis of the Acceleration Effects on Submarine's Engine Pedestal Produced by the Excitation Force from Propeller Shafts and Engines[J]. Chinese Journal of Ship Research, 2013, 8(5): 71-75. DOI: 10.3969/j.issn.1673-3185.2013.05.012
    [9]Yuan Chunhui, Lang Bo. 奇异值分解在设备振动激励力估算中的应用[J]. Chinese Journal of Ship Research, 2007, 2(2): 15-18,30. DOI: 10.3969/j.issn.1673-3185.2007.02.004
    [10]Yuan Chunhui, Zhu Xianming, Shao Hanlin, Zhang Guoliang. 船舶机械振动源激励力的间接估算工程方法[J]. Chinese Journal of Ship Research, 2006, 1(1): 25-32. DOI: 10.3969/j.issn.1673-3185.2006.01.006

Catalog

    Article views (105) PDF downloads (2) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return