TANG X Y, MIAO Y Y, XIA L S, et al. A Review of Hydrodynamic Wakes Research on Submerged Bodies[J]. Chinese Journal of Ship Research, 2025, 20(X): 1–16 (in Chinese). DOI: 10.19693/j.issn.1673-3185.04434
Citation: TANG X Y, MIAO Y Y, XIA L S, et al. A Review of Hydrodynamic Wakes Research on Submerged Bodies[J]. Chinese Journal of Ship Research, 2025, 20(X): 1–16 (in Chinese). DOI: 10.19693/j.issn.1673-3185.04434

A Review of Hydrodynamic Wakes Research on Submerged Bodies

More Information
  • Received Date: March 30, 2025
  • Revised Date: May 12, 2025
  • Official website online publication date: May 13, 2025
© 2025 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • Research on hydrodynamic wakes of submerged bodies is crucial for optimizing non-acoustic stealth and enhancing anti-submarine detection. This review covers the types, characteristics, experimental and numerical methods, and SAR technology applications in wake detection. Types and Characteristics: Hydrodynamic wake studies, dating back to the early 20th century, focus on complex fluid structures influenced by environmental factors like waves, temperature gradients, and water density stratification. Advances in CFD and experimental techniques have improved simulations and observations of these wakes. Wakes are categorized into surface waves ("V"-shaped and Bernoulli humps), turbulent wakes, and internal wave wakes, each influenced by different physical interactions. Experimental and Numerical Methods: Water tunnel experiments and numerical simulations are key research tools. Experiments provide direct observations of wake formation, while simulations offer flexible analysis of complex flow fields. Combining these methods offers comprehensive insights into wake dynamics. SAR Technology: SAR technology has revolutionized wake detection in complex maritime environments. It offers all-weather detection, passive modes, and wide-area coverage but faces limitations due to radar parameters, sea conditions, cost, and technical barriers. Future Directions: Future research should integrate numerical simulations, lab experiments, and field validation to enhance weak wake detection using deep learning, improving generalizability with limited data. This will optimize submerged body design, reduce costs, and enhance stealth performance.

  • [1]
    刘洋, 朱飞定, 谭佩钰, 等. 潜艇水动力尾迹与热尾迹耦合作用的数值模拟[J]. 红外技术, 2018, 40(1): 62–67.

    LIU Y, ZHU F D, TAN P Y, et al. Numerical simulation of the coupling effect of submarine hydrodynamic wake and thermal trail[J]. Infrared Technology, 2018, 40(1): 62–67 (in Chinese).
    [2]
    方尔正, 桂晨阳, 王欢. 潜艇的非声学探测技术[J]. 国防科技工业, 2020(6): 66−68.

    FANG E Z, GUI C Y, WANG H. Non-acoustic detection technologies for submarines[J]. Defence Science & Technology Industry, 2020(6): 66−68 (in Chinese). (查阅网上资料, 未找到本条文献英文翻译信息, 请确认)
    [3]
    刘腾蛟, 王丹, 刘金国. 潜艇非声探测技术综述[J]. 水下无人系统学报, 2023, 31(4): 521–526. doi: 10.11993/j.issn.2096-3920.2023-0054

    LIU T J, WANG D, LIU J G. Review of non-acoustic detection technologies of submarines[J]. Journal of Unmanned Undersea Systems, 2023, 31(4): 521–526 (in Chinese). doi: 10.11993/j.issn.2096-3920.2023-0054
    [4]
    常煜, 洪方文. 两层流体中潜艇水下运动尾迹的数值模拟[J]. 水动力学研究与进展A辑, 2006, 21(1): 76–83. doi: 10.3969/j.issn.1000-4874.2006.01.012

    CHANG Y, HONG F W. Numerical simulation of wakes for moving submarine in a two-layer fluid[J]. Journal of Hydrodynamics A, 2006, 21(1): 76–83 (in Chinese). doi: 10.3969/j.issn.1000-4874.2006.01.012
    [5]
    罗恒, 陈科, 尤云祥, 等. 运动潜体尾迹及其与随机海面相互作用的数值模拟[J]. 上海交通大学学报, 2007, 41(9): 1435–1440. doi: 10.3321/j.issn:1006-2467.2007.09.010

    LUO H, CHEN K, YOU Y X, et al. The numerical simulation of interaction between free-surface wake generated by a moving submerged body and stochastic ocean waves[J]. Journal of Shanghai Jiaotong University, 2007, 41(9): 1435–1440 (in Chinese). doi: 10.3321/j.issn:1006-2467.2007.09.010
    [6]
    洪方文, 常煜. 均匀流中潜艇水下运动表面尾迹的数值模拟[J]. 船舶力学, 2005, 9(4): 9–17. doi: 10.3969/j.issn.1007-7294.2005.04.002

    HONG F W, CHANG Y. Numerical simulation of surface wake for submarine moving in homogeneous fluid[J]. Journal of Ship Mechanics, 2005, 9(4): 9–17 (in Chinese). doi: 10.3969/j.issn.1007-7294.2005.04.002
    [7]
    张效慈, 张军. 变密度深水中的内波向水面的垂直传播[J]. 船舶力学, 2004, 8(1): 12–18. doi: 10.3969/j.issn.1007-7294.2004.01.002

    ZHANG X C, ZHANG J. Perpendicular propagation of internal waves in a stratified deep-water towards water surface[J]. Journal of Ship Mechanics, 2004, 8(1): 12–18 (in Chinese). doi: 10.3969/j.issn.1007-7294.2004.01.002
    [8]
    彭亮, 王建勋, 邓海华, 等. 水下非声探测与隐身技术综述[J]. 舰船科学技术, 2014, 36(5): 6–10. doi: 10.3404/j.issn.1672-7649.2014.05.002

    PENG L, WANG J X, DENG H H, et al. Review of the non-acoustic detection and stealth technology[J]. Ship Science and Technology, 2014, 36(5): 6–10 (in Chinese). doi: 10.3404/j.issn.1672-7649.2014.05.002
    [9]
    THOMSON W. On ship waves[J]. Proceedings of the Institution of Mechanical Engineers, 1887, 38(1): 409–434. doi: 10.1243/PIME_PROC_1887_038_028_02
    [10]
    JACKSON C R, APEL J R. Synthetic aperture radar: marine user's manual[R]. Washington: NOAA, 2004: 227−303.
    [11]
    张军, 张效慈, 赵峰, 等. 源于水动力学的潜艇尾迹非声探测技术研究之进展[J]. 船舶力学, 2003, 7(2): 121–128. doi: 10.3969/j.issn.1007-7294.2003.02.016

    ZHANG J, ZHANG X C, ZHAO F, et al. Progress of investigation on non-acoustic detection for submarine wake originated from naval hydrodynamics[J]. Journal of Ship Mechanics, 2003, 7(2): 121–128 (in Chinese). doi: 10.3969/j.issn.1007-7294.2003.02.016
    [12]
    张昊. 水下航行体的兴波尾迹实验和基于SPH方法的仿真研究[D]. 哈尔滨: 哈尔滨工业大学, 2023. doi: 10.27061/d.cnki.ghgdu.2023.004945.

    ZHANG H. Experimental investigation and SPH simulation on the wake of an underwater vehicle[D]. Harbin: Harbin Institute of Technology, 2023. doi: 10.27061/d.cnki.ghgdu.2023.004945 (in Chinese).
    [13]
    张民, 王乐天, 江旺强, 等. 舰船尾迹的电磁成像机理及特征提取技术[M]. 北京: 电子工业出版社, 2023.

    ZHANG M, WANG L T, JIANG W Q, et al. Electromagnetic imaging mechanism and feature extraction technology of ship wakes[M]. Beijing: Publishing House of Electronics Industry, 2023 (in Chinese). (查阅网上资料, 未找到本条文献英文翻译信息, 请确认)
    [14]
    秦朝峰, 陈旭, 于佳. 跃层中运动小球产生的内波对表层流场的影响[J]. 中国海洋大学学报, 2009, 39(S1): 303–310. doi: 10.16441/j.cnki.hdxb.2009.s1.056

    QIN C F, CHEN X, YU J. Surface effects of internal wave generated by a towed sphere in mid-pycnocline[J]. Periodical of Ocean University of China, 2009, 39(S1): 303–310 (in Chinese). doi: 10.16441/j.cnki.hdxb.2009.s1.056
    [15]
    高德宝, 张军, 周根水, 等. 拖曳体内波尾迹水下/水面波流特征试验研究[J]. 船舶力学, 2023, 27(1): 1–9. doi: 10.3969/j.issn.1007-7294.2023.01.001

    GAO D B, ZHANG J, ZHOU G S, et al. Experimental study on characteristics of water surface flow and underwater flow for internal waves generated by a towed body in a stratified fluid[J]. Journal of Ship Mechanics, 2023, 27(1): 1–9 (in Chinese). doi: 10.3969/j.issn.1007-7294.2023.01.001
    [16]
    LI D, YANG Q, ZHAI L, et al. Numerical investigation on the wave interferences of submerged bodies operating near the free surface[J]. International Journal of Naval Architecture and Ocean Engineering, 2021, 13: 65–74. doi: 10.1016/j.ijnaoe.2021.01.002
    [17]
    师俞晨. 基于遥感影像水下目标尾迹探测综述[J]. 现代防御技术, 2024, 52(1): 83–91. doi: 10.3969/j.issn.1009-086x.2024.01.011

    SHI Y C. Review of underwater target wake detection in remote sensing[J]. Modern Defence Technology, 2024, 52(1): 83–91 (in Chinese). doi: 10.3969/j.issn.1009-086x.2024.01.011
    [18]
    陈夫余, 王东阳. 潜航体激发海洋内波概述[J]. 船舶物资与市场, 2020(4): 7−8. doi: 10.19727/j.cnki.cbwzysc.2020.04.003.

    CHEN F Y, WANG D Y. An overview of internal waves induced by submersibles[J]. Marine Equipment/Materials & Marketing, 2020(4): 7−8. doi: 10.19727/j.cnki.cbwzysc.2020.04.003 (in Chinese). (查阅网上资料,未找到本条文献英文翻译信息,请确认)
    [19]
    徐世昌, 姚雄亮. 分层流体中水平运动潜体产生的内波分析[J]. 海军工程大学学报, 2006, 18(4): 60–64. doi: 10.3969/j.issn.1009-3486.2006.04.013

    XU S C, YAO X L. Internal waves generated by a horizontal moving submarine in a stritifed fluid[J]. Journal of Naval University of Engineering, 2006, 18(4): 60–64 (in Chinese). doi: 10.3969/j.issn.1009-3486.2006.04.013
    [20]
    ROBEY H F. The generation of internal waves by a towed sphere and its wake in a thermocline[J]. Physics of Fluids, 1997, 9(11): 3353–3367. doi: 10.1063/1.869448
    [21]
    邵武. 潜航体湍流尾迹特征及尾流热特性数值研究[D]. 大连: 大连海事大学, 2023. doi: 10.26989/d.cnki.gdlhu.2023.001964.

    SHAO W. Numerical research on turbulent wake characteristics and thermal characteristics of submarine wake[D]. Dalian: Dalian Maritime University, 2023. doi: 10.26989/d.cnki.gdlhu.2023.001964 (in Chinese).
    [22]
    牛明昌, 丁勇, 马卫状, 等. 基于温度异重流模型的连续分层流数值模拟方法研究[J]. 船舶力学, 2017, 21(8): 941–949. doi: 10.3969/j.issn.1007-7294.2017.08.002

    NIU M C, DING Y, MA W Z, et al. Research on the numerical simulation methods of continuously stratified flows based on thermal density current model[J]. Journal of Ship Mechanics, 2017, 21(8): 941–949 (in Chinese). doi: 10.3969/j.issn.1007-7294.2017.08.002
    [23]
    李宇航, 李广华, 侯冬冬, 等. 南海分层环境水下航行体内波尾迹水面响应特性研究[J]. 力学学报, 2024, 56(8): 2212–2230. doi: 10.6052/0459-1879-23-555

    LI Y H, LI G H, HOU D D, et al. Surface signature characteristics of the internal wave generated by a submerged body in the South China Sea[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(8): 2212–2230 (in Chinese). doi: 10.6052/0459-1879-23-555
    [24]
    李林杰, 赵彬彬, 段文洋. 海底物体运动生成内波问题研究[J]. 哈尔滨工程大学学报, 2023, 44(9): 1487–1493. doi: 10.11990/jheu.202203007

    LI L J, ZHAO B B, DUAN W Y. Investigation of the problem of internal waves generated by the movement of a seafloor object[J]. Journal of Harbin Engineering University, 2023, 44(9): 1487–1493 (in Chinese). doi: 10.11990/jheu.202203007
    [25]
    马卫状, 丁勇, 李云波, 等. 稳定分层流数值模拟方法及圆球绕流特征研究[J]. 船舶力学, 2020, 24(10): 1278–1287. doi: 10.3969/j.issn.1007-7294.2020.10.006

    MA W Z, DING Y, LI Y B, et al. On the numerical methods of the stable stratified flows and wake characteristics around a sphere[J]. Journal of Ship Mechanics, 2020, 24(10): 1278–1287 (in Chinese). doi: 10.3969/j.issn.1007-7294.2020.10.006
    [26]
    吴炎, 李宇航, 陈科, 等. 温度分层流体中潜航器激发内波试验[J]. 江苏科技大学学报(自然科学版), 2022, 36(3): 1–9. doi: 10.11917/j.issn.1673-4807.2022.03.001

    WU Y, LI Y H, CHEN K, et al. Investigation on internal wave induced by an underwater vehicle in a thermally stratified fluid via experiments[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2022, 36(3): 1–9 (in Chinese). doi: 10.11917/j.issn.1673-4807.2022.03.001
    [27]
    闫大海, 张晗, 苗金林, 等. 潜艇隐身技术分析[J]. 舰船科学技术, 2020, 42(21): 128–133. doi: 10.3404/j.issn.1672-7649.2020.11.026

    YAN D H, ZHANG H, MIAO J L, et al. Research on submarine stealth technology[J]. Ship Science and Technology, 2020, 42(21): 128–133 (in Chinese). doi: 10.3404/j.issn.1672-7649.2020.11.026
    [28]
    周根水, 姚志崇, 洪方文. 分层流体中尾流混合效应数值模拟[J]. 水动力学研究与进展A辑, 2018, 33(1): 40–47. doi: 10.16076/j.cnki.cjhd.2018.01.005

    ZHOU G S, YAO Z C, HONG F W. Numerical research on the mixing of wake in stratified fluids[J]. Chinese Journal of Hydrodynamics A, 2018, 33(1): 40–47 (in Chinese). doi: 10.16076/j.cnki.cjhd.2018.01.005
    [29]
    洪方文, 姚志崇, 高丽瑾, 等. 水下运动体体效应内波理论分析研究[J]. 水动力学研究与进展A辑, 2012, 27(4): 471–477. doi: 10.3969/j.issn.1000-4874.2012.04.015

    HONG F W, YAO Z C, GAO L J, et al. Theoretical analysis of internal wave generated by an underwater moving body[J]. Chinese Journal of Hydrodynamics A, 2012, 27(4): 471–477 (in Chinese). doi: 10.3969/j.issn.1000-4874.2012.04.015
    [30]
    赵先奇, 尤云祥, 陈科, 等. 分层流体中细长体生成内波的试验研究[J]. 上海交通大学学报, 2009, 43(8): 1298–1301. doi: 10.3321/j.issn:1006-2467.2009.08.023

    ZHAO X Q, YOU Y X, CHEN K, et al. Experimental study on the generation of internal waves by a slender body in stratified fluid[J]. Journal of Shanghai Jiaotong University, 2009, 43(8): 1298–1301 (in Chinese). doi: 10.3321/j.issn:1006-2467.2009.08.023
    [31]
    侯建军, 李大伟, 高元博, 等. 层化环境下自由表面散度场的数值与实验研究[J]. 舰船科学技术, 2022, 44(15): 60–65. doi: 10.3404/j.issn.1672-7649.2022.15.013

    HOU J J, LI D W, GAO Y B, et al. Numerical and experimental analysis of divergence of free surface in a stratified fluid[J]. Ship Science and Technology, 2022, 44(15): 60–65 (in Chinese). doi: 10.3404/j.issn.1672-7649.2022.15.013
    [32]
    陈科, 王宏伟, 盛立, 等. 拖曳体激发内波时空特性实验及其理论模型[J]. 物理学报, 2018, 67(3): 034701. doi: 10.7498/aps.67.20170920

    CHEN K, WANG H W, SHENG L, et al. Theoretical models and experiments for the time-space characteristics of internal waves generated by towed bodies[J]. Acta Physica Sinica, 2018, 67(3): 034701 (in Chinese). doi: 10.7498/aps.67.20170920
    [33]
    张效慈, 张军. 潜艇内波波迹——航空猎潜的新对象[J]. 船舶力学, 2007, 11(4): 508–513. doi: 10.3969/j.issn.1007-7294.2007.04.003

    ZHANG X C, ZHANG J. Internal wave wake of submarine——a new target of aerial submarine hunting[J]. Journal of Ship Mechanics, 2007, 11(4): 508–513 (in Chinese). doi: 10.3969/j.issn.1007-7294.2007.04.003
    [34]
    魏岗, 田俊杰, 杨建国. 潜航体内波水动力性能试验平台[C]//2009年船舶结构力学学术会议暨中国船舶学术界进入ISSC30周年纪念会论文集. 南京: 中国造船工程学会船舶力学学术委员会, 2009: 95−100.

    WEI G, TIAN J J, YANG J G. Experimental Center of Internal wave hydrodynamics on moving submerged body[C]//Proceedings of the 2009 Conference on Ship Structural Mechanics and the Commemorative Meeting for the 30th Anniversary of China's Shipbuilding Industry Entering ISSC. Nanjing: Ship Mechanics Academic Committee of China Shipbuilding Engineering Society, 2009: 95−100 (in Chinese). (查阅网上资料, 未找到本条文献论文集名英文翻译信息, 请确认)
    [35]
    尤云祥, 魏岗, 胡天群. 船舶与海洋工程内波水动力学试验平台[C]//第七届全国实验流体力学学术会议论文集. 北戴河: 中国力学学会, 2007: 263−267.

    YOU Y X, WEI G, HU T Q. On the stratified fluid tank of the naval architecture and ocean engineering[C]//Proceedings of the 7th National Conference on Experimental Fluid Mechanics. Beidaihe: The Chinese Society of Theoretical and Applied Mechanics, 2007: 263−267 (in Chinese). (查阅网上资料, 未找到本条文献论文集名英文翻译信息, 请确认)
    [36]
    刘辉志, 梁彬, 朱凤荣, 等. 山谷中热力环流的水槽实验研究[J]. 自然科学进展, 2003, 13(9): 1005−1008. doi: 10.3321/j.issn:1002-008X.2003.09.020.

    LIU H Z, LIANG B, ZHU F R, et al. Water tank experimental study of thermal circulation in valleys[J]. Progress in Natural Science, 2003, 13(9): 1005−1008. doi: 10.3321/j.issn:1002-008X.2003.09.020 (in Chinese). (查阅网上资料,未找到本条文献英文翻译信息,请确认)
    [37]
    段宁远. 分层流体中螺旋桨效应对潜航体内波影响特性实验研究[D]. 上海: 上海交通大学, 2018. doi: 10.27307/d.cnki.gsjtu.2018.003011.

    DUAN N Y. Experimental investigation on propeller effect on internal waves generated by a moving submarine in a stratified fluid[D]. Shanghai: Shanghai Jiao Tong University, 2018. doi: 10.27307/d.cnki.gsjtu.2018.003011 (in Chinese).
    [38]
    武军林. 斜向内孤立波与细长潜体相互作用的实验研究[D]. 长沙: 国防科技大学, 2017. doi: 10.27052/d.cnki.gzjgu.2017.001056.

    WU J L. Experimental study on the interaction of oblique propagating internal solitary wave with a submerged slender body[D]. Changsha: National University of Defense Technology, 2017. doi: 10.27052/d.cnki.gzjgu.2017.001056 (in Chinese).
    [39]
    郭海燕, 吴凯锋, 王飞, 等. 周期性内波对横置圆柱体作用的试验研究[J]. 中国海洋大学学报, 2016, 46(5): 111–118. doi: 10.16441/j.cnki.hdxb.20140187

    GUO H Y, WU K F, WANG F, et al. Experimental investigations on the interaction of periodic internal waves with a horizontal cylinder[J]. Periodical of Ocean University of China, 2016, 46(5): 111–118 (in Chinese). doi: 10.16441/j.cnki.hdxb.20140187
    [40]
    牛猛. 分层流实验室造波系统的设计与开发[J]. 工程建设, 2022, 5(12): 129–132. doi: 10.33142/ec.v5i12.7293

    NIU M. Design and development of wave making system in stratified flow laboratory[J]. Engineering Construction, 2022, 5(12): 129–132 (in Chinese). doi: 10.33142/ec.v5i12.7293
    [41]
    王梓健, 范丹, 姚仁太. 拖曳式水槽模拟实验系统及实验验证[J]. 辐射防护通讯, 2016, 36(2): 17–22. doi: 10.3969/j.issn.1004-6356.2016.02.002

    WANG Z J, FAN D, YAO R T. An introduction to CIRP’s towing tank simulation system[J]. Radiation Protection Bulletin, 2016, 36(2): 17–22 (in Chinese). doi: 10.3969/j.issn.1004-6356.2016.02.002
    [42]
    吴炎, 李宇航, 陈科, 等. 温度分层流体中潜航器激发内波试验[J]. 江苏科技大学学报(自然科学版), 2022, 36(3): 1−9. doi: 10.11917/j.issn.1673-4807.2022.03.001. (查阅网上资料,本条文献与第26条文献重复,请确认)

    WU Y, LI Y H, CHEN K, et al. Investigation on internal wave induced by an underwater vehicle in a thermally stratified fluid via experiments[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2022, 36(3): 1−9. doi: 10.11917/j.issn.1673-4807.2022.03.001 (in Chinese).
    [43]
    王泽航. 潜艇阵列运动生成大幅内波方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2022. doi: 10.27060/d.cnki.ghbcu.2022.000758.

    WANG Z H. Study on the method of generating large internal waves from submarine array motion[D]. Harbin: Harbin Engineering University, 2022. doi: 10.27060/d.cnki.ghbcu.2022.000758 (in Chinese).
    [44]
    杨立, 初明忠, 张健, 等. 潜艇尾迹内波的实验研究[J]. 船舶力学, 2008, 12(1): 18–24. doi: 10.3969/j.issn.1007-7294.2008.01.003

    YANG L, CHU M J, ZHANG J, et al. Experimental investigation on internal wave produced by submarine[J]. Journal of Ship Mechanics, 2008, 12(1): 18–24 (in Chinese). doi: 10.3969/j.issn.1007-7294.2008.01.003
    [45]
    魏岗, 赵先奇, 苏晓冰, 等. 分层流体中尾迹时间序列结构的实验研究[J]. 中国科学 G辑: 物理学 力学 天文学, 2009, 39(9): 1338–1347. doi: 10.1360/2009-39-9-1338

    WEI G, ZHAO X Q, SU X B, et al. Experimental study on time series structures of the wake in a linearly stratified fluid[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2009, 39(9): 1338–1347 (in Chinese). doi: 10.1360/2009-39-9-1338
    [46]
    魏岗, 吴宁, 徐小辉, 等. 线性密度分层流体中半球体运动生成内波的实验研究[J]. 物理学报, 2011, 60(4): 044704. doi: 10.7498/aps.60.044704

    WEI G, WU N, XU X H, et al. Experiments on the generation of internal wavesby a hemispheroid in a linearly stratified fluid[J]. Acta Physica Sinica, 2011, 60(4): 044704 (in Chinese). doi: 10.7498/aps.60.044704
    [47]
    JANOWITZ G S. Lee waves in three-dimensional stratified flow[J]. Journal of Fluid Mechanics, 1984, 148: 97–108. doi: 10.1017/S0022112084002263
    [48]
    王进, 尤云祥, 胡天群, 等. 密度分层流体中不同长径比拖曳潜体激发内波特性实验[J]. 科学通报, 2012, 57(8): 606–617. doi: 10.1360/972011-1361

    WANG J, YOU Y X, HU T Q, et al. The characteristics of internal waves excited by towed bodies with different aspect ratios in a stratified fluid[J]. Chinese science bulletin, 2012, 57(8): 606–617 (in Chinese). doi: 10.1360/972011-1361
    [49]
    李万鹏, 魏岗, 杜辉, 等. 分层流体中螺旋桨效应激发内波的实验分析[J]. 解放军理工大学学报(自然科学版), 2014, 15(6): 576–582. doi: 10.7666/j.issn.1009-3443.201406013

    LI W P, WEI G, DU H, et al. Experimental study on internal wave generated by a propeller in a stratified fluid[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2014, 15(6): 576–582 (in Chinese). doi: 10.7666/j.issn.1009-3443.201406013
    [50]
    刘双, 何广华, 王威, 等. 密度分层流中浅航艇兴波尾迹分析[J]. 哈尔滨工业大学学报, 2021, 53(7): 52–59. doi: 10.11918/202005023

    LIU S, HE G H, WANG W, et al. Analysis on the wake of a shallow navigation submarine in the density-stratified fluid[J]. Journal of Harbin Institute of Technology, 2021, 53(7): 52–59 (in Chinese). doi: 10.11918/202005023
    [51]
    苏焱, 吉健. 基于高精度Boussinesq方程的数值模拟潜艇尾迹[J]. 华中科技大学学报(自然科学版), 2019, 47(4): 99–103. doi: 10.13245/j.hust.190417

    SU Y, JI J. Numerical simulation of submarine wake based on high accuracy Boussinesq equation[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(4): 99–103 (in Chinese). doi: 10.13245/j.hust.190417
    [52]
    缪宇跃, 孙江龙. CFD敞水螺旋桨性能计算分析[J]. 中国舰船研究, 2011, 6(5): 63–68. doi: 10.3969/j.issn.1673-3185.2011.05.013

    MIAO Y Y, SUN J L. CFD analysis of hydrodynamic performance of propeller in open water[J]. Chinese Journal of Ship Research, 2011, 6(5): 63–68 (in Chinese). doi: 10.3969/j.issn.1673-3185.2011.05.013
    [53]
    田畅, 夏林生, 付敏飞, 等. 潜艇伴流场对螺旋桨激振力的影响[J]. 中国舰船研究, 2023, 18(3): 111–121. doi: 10.19693/j.issn.1673-3185.02696

    TIAN C, XIA L S, FU M F, et al. Influence of wake field on propeller exciting force of submarine[J]. Chinese Journal of Ship Research, 2023, 18(3): 111–121 (in Chinese). doi: 10.19693/j.issn.1673-3185.02696
    [54]
    HUANG F L, MENG Q J, CAO L S, et al. Wakes and free surface signatures of a generic submarine in the homogeneous and linearly stratified fluid[J]. Ocean Engineering, 2022, 250: 111062. doi: 10.1016/j.oceaneng.2022.111062
    [55]
    CAO L S, GAO G, GUO E K, et al. Hydrodynamic performances and wakes induced by a generic submarine operating near the free surface in continuously stratified fluid[J]. Journal of Hydrodynamics, 2023, 35(3): 396–406. doi: 10.1007/s42241-023-0037-8
    [56]
    陆炜, 孙克帅, 姜胜超. 层化海洋环境下潜艇水下航行阻力及兴波数值研究[J]. 船舶工程, 2021, 43(12): 69–76. doi: 10.13788/j.cnki.cbgc.2021.12.11

    LU W, SUN K S, JIANG S C. Numerical research on underwater navigation resistance and travel waves of submarine in stratified ocean environment[J]. Ship Engineering, 2021, 43(12): 69–76 (in Chinese). doi: 10.13788/j.cnki.cbgc.2021.12.11
    [57]
    朱伟, 尤云祥, 缪国平, 等. 两层流体中运动物体的兴波特性[J]. 船舶力学, 2004, 8(5): 1–9. doi: 10.3969/j.issn.1007-7294.2004.05.001

    ZHU W, YOU Y X, MIAO G P, et al. Wave-making characteristics of a moving body in a two-layer fluid[J]. Journal of Ship Mechanics, 2004, 8(5): 1–9 (in Chinese). doi: 10.3969/j.issn.1007-7294.2004.05.001
    [58]
    张海伟, 尤云祥, 魏岗, 等. 两层粘性流体中运动球体尾流的数值模拟[J]. 上海交通大学学报, 2007, 41(2): 194–198. doi: 10.3321/j.issn:1006-2467.2007.02.009

    ZHANG H W, YOU Y X, WEI G, et al. The numerical simulation for waves generated by a moving body in a viscous two-layer fluid[J]. Journal of Shanghai Jiaotong University, 2007, 41(2): 194–198 (in Chinese). doi: 10.3321/j.issn:1006-2467.2007.02.009
    [59]
    罗恒. 粘性分层流中水下航行体尾迹在随机海面中的表现特征研究[D]. 上海: 上海交通大学, 2007.

    LUO H. The surface wake generated by a submerged moving body in a stratified viscous fluid and its interaction with the stochastic ocean waves[D]. Shanghai: Shanghai Jiao Tong University, 2007 (in Chinese).
    [60]
    张皓清, 杨立伟. 水下重力梯度导航中的潜艇尾迹影响分析[J/OL]. 大地测量与地球动力学, 2025: 1−7(2025-03-27)[2025-05-03]. https://link.cnki.net/doi/10.14075/j.jgg.2024.11.515.

    ZHANG H, YANG L W. Analysis of submarine wake influence in underwater gravity gradient navigation[J/OL]. Journal of Geodesy and Geodynamics, 2025: 1−7(2025-03-27)[2025-05-03]. https://link.cnki.net/doi/10.14075/j.jgg.2024.11.515 (in Chinese).
    [61]
    胡开业, 杨哲超, 于祥, 等. 分层流中附体对潜航体尾迹频谱特性影响研究[J]. 舰船科学技术, 2021, 43(17): 19–24. doi: 10.3404/j.issn.1672-7649.2021.09.004

    HU K Y, YANG Z C, YU X, et al. Influence of appendages on spectrum characteristics of submarine wake in stratified flow[J]. Ship Science and Technology, 2021, 43(17): 19–24 (in Chinese). doi: 10.3404/j.issn.1672-7649.2021.09.004
    [62]
    杨哲超. 潜艇水动力尾迹特性与改善措施研究[D]. 哈尔滨: 哈尔滨工程大学, 2021. doi: 10.27060/d.cnki.ghbcu.2021.001073.

    YANG Z C. Research on the characteristics and improvement measures of submarine hydrodynamic wake[D]. Harbin: Harbin Engineering University, 2021. doi: 10.27060/d.cnki.ghbcu.2021.001073 (in Chinese).
    [63]
    卢云涛, 张怀新, 潘徐杰. 全附体潜艇的流场和流噪声的数值模拟[J]. 振动与冲击, 2008, 27(9): 142–146. doi: 10.3969/j.issn.1000-3835.2008.09.034

    LU Y T, ZHANG H X, PAN X J. Numerical simulation of flow-field and flow-noise of a fully appendage submarine[J]. Journal of Vibration and Shock, 2008, 27(9): 142–146 (in Chinese). doi: 10.3969/j.issn.1000-3835.2008.09.034
    [64]
    何广华, 刘双, 张志刚, 等. 附体对潜艇兴波尾迹的影响分析[J]. 华中科技大学学报(自然科学版), 2019, 47(10): 56–62. doi: 10.13245/j.hust.191011

    HE G H, LIU S, ZHANG Z G, et al. Analysis of influence of appendages on wave-making of submarine[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(10): 56–62 (in Chinese). doi: 10.13245/j.hust.191011
    [65]
    XIAO X, LIANG Q F, KE L, et al. Effects of X rudder area on the horizontal mechanical properties and wake flow field of submarines[J]. Journal of Physics: Conference Series, 2021, 2095(1): 012089. doi: 10.1088/1742-6596/2095/1/012089
    [66]
    梁秋凤, 叶金铭, 张露. 附体及尾操纵面对潜艇尾流场影响研究综述[J]. 兵器装备工程学报, 2021, 42(10): 1–7. doi: 10.11809/bqzbgcxb2021.10.001

    LIANG Q F, YE J M, ZHANG L. Summary of influence of appendage and tail control surface on submarine wake flow field[J]. Journal of Ordnance Equipment Engineering, 2021, 42(10): 1–7 (in Chinese). doi: 10.11809/bqzbgcxb2021.10.001
    [67]
    吴建威, 余昊成, 王赟, 等. 连续分层环境中Suboff激发的自由面尾迹数值仿真[J]. 舰船科学技术, 2021, 43(21): 20–26. doi: 10.3404/j.issn.1672-7649.2021.11.004

    WU J W, YU H C, WANG Y, et al. Numerical investigation of free surface wake excited by Suboff in continuously stratified fluid[J]. Ship Science and Technology, 2021, 43(21): 20–26 (in Chinese). doi: 10.3404/j.issn.1672-7649.2021.11.004
    [68]
    李丹梦, 金伟其, 李力, 等. 水下运动目标的水面波纹数值模拟及分析[J]. 红外与激光工程, 2018, 47(11): 1126004. doi: 10.3788/irla201847.1126004

    LI D M, JIN W Q, LI L, et al. Numerical simulation and analysis of free-surface wake generated by moving submerged target[J]. Infrared and Laser Engineering, 2018, 47(11): 1126004 (in Chinese). doi: 10.3788/irla201847.1126004
    [69]
    于祥, 胡开业. 分层流中潜艇加减速对尾迹特征特性的影响[J]. 中国舰船研究, 2022, 17(3): 67–77,101. doi: 10.19693/j.issn.1673-3185.02490

    YU X, HU K Y. Influence of submarine's acceleration and deceleration on wake spectrum characteristics in stratified flow[J]. Chinese Journal of Ship Research, 2022, 17(3): 67–77,101 (in both Chinese and English). doi: 10.19693/j.issn.1673-3185.02490
    [70]
    丁勇, 段菲, 韩盼盼, 等. 两层流中潜体运动与诱发内波特征关系研究[J]. 船舶力学, 2016, 20(5): 523–529. doi: 10.3969/j.issn.1007-7294.2016.05.002

    DING Y, DUAN F, HAN P P, et al. Research on the relationship between moving patterns of submerged body and the features of induced internal waves in two layer fluid[J]. Journal of Ship Mechanics, 2016, 20(5): 523–529 (in Chinese). doi: 10.3969/j.issn.1007-7294.2016.05.002
    [71]
    胡开业, 于祥, 丁勇. 分层流中潜艇下潜运动对尾迹特性影响研究[J]. 哈尔滨工程大学学报, 2023, 44(1): 65–72,108. doi: 10.11990/jheu.202107038

    HU K Y, YU X, DING Y. Research on the influence of submarine diving in stratified flow on the wake characteristics[J]. Journal of Harbin Engineering University, 2023, 44(1): 65–72,108 (in Chinese). doi: 10.11990/jheu.202107038
    [72]
    王兴茹. 潜艇尾流空间演化及流场特性仿真分析[D]. 哈尔滨: 哈尔滨工业大学, 2019. doi: 10.27061/d.cnki.ghgdu.2019.003214.

    WANG X R. Simulation of submarine wake evolution and flow field characteristics[D]. Harbin: Harbin Institute of Technology, 2019. doi: 10.27061/d.cnki.ghgdu.2019.003214 (in Chinese).
    [73]
    黄璐. 潜艇近水面航行尾流空间演化分析[D]. 哈尔滨: 哈尔滨工业大学, 2020. doi: 10.27061/d.cnki.ghgdu.2020.003106.

    HUANG L. Spatial evolution analysis of wake of submarine sailing near water[D]. Harbin: Harbin Institute of Technology, 2020. doi: 10.27061/d.cnki.ghgdu.2020.003106 (in Chinese).
    [74]
    于祥. 机动模式对潜艇水动力尾迹的影响研究[D]. 哈尔滨: 哈尔滨工程大学, 2021. doi: 10.27060/d.cnki.ghbcu.2021.001846.

    YU X. Research on the influence of maneuver mode on submarine hydrodynamic wake[D]. Harbin: Harbin Engineering University, 2021. doi: 10.27060/d.cnki.ghbcu.2021.001846 (in Chinese).
    [75]
    许英豪. 全附体潜艇海面映波及目标特性仿真研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. doi: 10.27061/d.cnki.ghgdu.2021.002732.

    XU Y H. Simulation research on sea surface reflection and targetion characteristics of full appendage submarine[D]. Harbin: Harbin Institute of Technology, 2021. doi: 10.27061/d.cnki.ghgdu.2021.002732 (in Chinese).
    [76]
    陈标, 高国兴, 徐世昌, 等. SAR探测水下运动物体波浪尾迹的模拟研究[J]. 遥感技术与应用, 2003, 18(1): 19–22. doi: 10.3969/j.issn.1004-0323.2003.01.005

    CHEN B, GAO G X, XU S C, et al. Simulation research of wave wake detect of underwater mobile using SAR[J]. Remote Sensing Technology and Application, 2003, 18(1): 19–22 (in Chinese). doi: 10.3969/j.issn.1004-0323.2003.01.005
    [77]
    李春升, 王伟杰, 王鹏波, 等. 星载SAR技术的现状与发展趋势[J]. 电子与信息学报, 2016, 38(1): 229–240. doi: 10.11999/JEIT151116

    LI C S, WANG W J, WANG P B, et al. Current situation and development trends of spaceborne SAR technology[J]. Journal of Electronics & Information Technology, 2016, 38(1): 229–240 (in Chinese). doi: 10.11999/JEIT151116
    [78]
    贺丰收, 张涛, 芦达. 机载对海探测雷达发展趋势[J]. 科技导报, 2017, 35(20): 28–35. doi: 10.3981/j.issn.1000-7857.2017.20.003

    HE F S, ZHANG T, LU D. Progress of airborne maritime detection radar[J]. Science & Technology Review, 2017, 35(20): 28–35 (in Chinese). doi: 10.3981/j.issn.1000-7857.2017.20.003
    [79]
    高国兴, 王振占, 陈标, 等. 水下运动源内波尾迹海面作用量谱扰动分析[J]. 中国海洋大学学报, 2011, 41(12): 17–21,68. doi: 10.3969/j.issn.1672-5174.2011.12.003

    GAO G X, WANG Z Z, CHEN B, et al. Analysis of the perturbation of oceanic surface action spectrum caused by internal-wave wake due to underwater moving object[J]. Periodical of Ocean University of China, 2011, 41(12): 17–21,68 (in Chinese). doi: 10.3969/j.issn.1672-5174.2011.12.003
    [80]
    贾浩文. 复杂环境电磁散射建模与SAR成像研究[D]. 延安: 延安大学, 2024. doi: 10.27438/d.cnki.gyadu.2024.000336.

    JIA H W. Research on electromagnetic scattering modeling and SAR imaging in complex scenes[D]. Yan'an: Yanan University, 2024. doi: 10.27438/d.cnki.gyadu.2024.000336 (in Chinese).
    [81]
    夏云青. 基于傅里叶变换的SAR图像舰船尾迹检测[J]. 舰船科学技术, 2023, 45(23): 186–189. doi: 10.3404/j.issn.1672-7649.2023.23.035

    XIA Y Q. Ship wake detection in SAR images based on Fourier transform[J]. Ship Science and Technology, 2023, 45(23): 186–189 (in Chinese). doi: 10.3404/j.issn.1672-7649.2023.23.035
    [82]
    徐世昌, 范植松. 运动潜体湍流尾迹的SAR遥感仿真研究[J]. 海军工程大学学报, 2009, 21(2): 59–65. doi: 10.7495/j.issn.1009-3486.2009.02.013

    XU S C, FAN Z S. Simulation research of SAR remote sensing of turbulent wake of underwater moving body[J]. Journal of Naval University of Engineering, 2009, 21(2): 59–65 (in Chinese). doi: 10.7495/j.issn.1009-3486.2009.02.013
    [83]
    王佳坤. 运动舰船尾迹SAR成像的电磁散射机理和模型研究[D]. 西安: 西安电子科技大学, 2017.

    WANG J K. Study on the scattering mechanism of ship wakes in SAR imaging[D]. Xi’an: Xidian University, 2017 (in Chinese).
    [84]
    贾惠. Kelvin尾迹的SAR成像及舰船参数估算研究[D]. 西安: 西安电子科技大学, 2019. doi: 10.27389/d.cnki.gxadu.2019.000512.

    JIA H. Research on the SAR imaging and the estimation of ship parameters about Kelvin wake[D]. Xi’an: Xidian University, 2019. doi: 10.27389/d.cnki.gxadu.2019.000512 (in Chinese).
    [85]
    任杰. 基于合成孔径雷达的潜艇探测技术[D]. 上海: 上海交通大学, 2017. doi: 10.27307/d.cnki.gsjtu.2017.000492.

    REN J. Submarine detection technology based on synthetic aperture radar[D]. Shanghai: Shanghai Jiao Tong University, 2017. doi: 10.27307/d.cnki.gsjtu.2017.000492 (in Chinese).
    [86]
    车梦虎, 秦锋. 水下航行体机动兴波尾迹遥感探测概率研究[J]. 兵工自动化, 2023, 42(2): 59–64. doi: 10.7690/bgzdh.2023.02.012

    CHE M H, QIN F. Study on detection probability of maneuvering wave-making wake of underwater vehicle by remote sensing[J]. Ordnance Industry Automation, 2023, 42(2): 59–64 (in Chinese). doi: 10.7690/bgzdh.2023.02.012
    [87]
    王乐天. 海洋目标尾迹电磁散射特性与SAR成像研究[D]. 西安: 西安电子科技大学, 2020. doi: 10.27389/d.cnki.gxadu.2020.003340.

    WANG L T. Study on the electromagnetic scattering characteristics of wakes induced by marine targets and its SAR imaging[D]. Xi'an: Xidian University, 2020. doi: 10.27389/d.cnki.gxadu.2020.003340 (in Chinese).
    [88]
    杨哲超, 任立群, 郅长红, 等. 海洋分层特征对合成孔径雷达图像内波尾迹可识别性的影响[J]. 中国舰船研究, 2025, 20(3): 296–304. doi: 10.19693/j.issn.1673-3185.03935

    YANG Z C, REN L Q, ZHI C H, et al. Impact of ocean stratification characteristics on identifiability of internal wave trails in synthetic aperture radar images[J]. Chinese Journal of Ship Research, 2025, 20(3): 296–304 (in Chinese). doi: 10.19693/j.issn.1673-3185.03935
    [89]
    舒服. 高分辨率光学遥感影像舰船尾迹检测及运动参数估计方法研究[D]. 武汉: 华中科技大学, 2021. doi: 10.27157/d.cnki.ghzku.2021.005678.

    SHU F. Wake detection and motion parameters estimation in high-resolution optical image[D]. Wuhan: Huazhong University of Science and Technology, 2021. doi: 10.27157/d.cnki.ghzku.2021.005678 (in Chinese).
    [90]
    吴荣峰, 唐希源. 一种改进的Mask R-CNN卫星影像船舶尾迹检测方法[J]. 智能计算机与应用, 2022, 12(2): 73–78. doi: 10.3969/j.issn.2095-2163.2022.02.015

    WU R F, TANG X Y. An improved satellite image ship wake detection method based on Mask R-CNN[J]. Intelligent Computer and Applications, 2022, 12(2): 73–78 (in Chinese). doi: 10.3969/j.issn.2095-2163.2022.02.015
    [91]
    邬烨文. 一种基于小波变换的SAR图像舰船尾迹检测算法[D]. 上海: 上海交通大学, 2009.

    WU Y W. Detection of ship wakes in SAR images based on wavelet transforms[D]. Shanghai: Shanghai Jiao Tong University, 2009 (in Chinese).
    [92]
    陈捷, 陈标, 陶荣华, 等. SAR图像海洋内波参数自动提取方法[J]. 海洋技术学报, 2014, 33(6): 20–27.

    CHEN J, CHEN B, TAO R H, et al. An automatic extraction method of SAR images of ocean internal wave parameters[J]. Journal of Ocean Technology, 2014, 33(6): 20–27 (in Chinese).
    [93]
    贾延明, 张永涛. 基于Hough变换的舰船尾迹检测研究[J]. 舰船科学技术, 2016, 38(4): 19–21.

    JIA Y M, ZHANG Y T. Research on ship wake detection based on Hough transform[J]. Ship Science and Technology, 2016, 38(4): 19–21 (in Chinese).
    [94]
    姬渊, 付春龙, 毛丽, 等. 基于船只尾迹遥感特征的航向提取方法研究[J]. 海洋测绘, 2021, 41(1): 75–78. doi: 10.3969/j.issn.1671-3044.2021.01.016

    JI Y, FU C L, MAO L, et al. Research on directions extraction method based on remote sensing features of ship wake[J]. Hydrographic Surveying and Charting, 2021, 41(1): 75–78 (in Chinese). doi: 10.3969/j.issn.1671-3044.2021.01.016
    [95]
    陈标, 侯海平, 陶荣华, 等. 舰船尾迹SAR图像特征的谱分析研究[J]. 舰船科学技术, 2008, 30(6): 95–98. doi: 10.3404/j.issn.1672-7649.2008.06.019

    CHEN B, HOU H P, TAO R H, et al. Study on the spectrum analysis of SAR image characteristic of ship wake[J]. Ship Science and Technology, 2008, 30(6): 95–98 (in Chinese). doi: 10.3404/j.issn.1672-7649.2008.06.019
    [96]
    王志鹤, 行坤, 崔宁, 等. 一种基于Radon变换和尾迹模型的尾迹检测算法[J]. 电子设计工程, 2022, 30(12): 1–6. doi: 10.14022/j.issn1674-6236.2022.12.001

    WANG Z H, XING K, CUI N, et al. A wake detection algorithm based on Radon transform and wake model[J]. Electronic Design Engineering, 2022, 30(12): 1–6 (in Chinese). doi: 10.14022/j.issn1674-6236.2022.12.001
    [97]
    周鹏, 石丽波, 张晰. 潜艇内波尾迹SAR成像模拟与检测方法研究[J/OL]. 雷达科学与技术, 2025: 1−8(2025-04-15)[2025-05-03]. http://kns.cnki.net/kcms/detail/34.1264.TN.20250414.1848.007.html.

    ZHOU P, SHI L B, ZHANG X. Simulation and detection methods of submarine internal wave wakes in SAR imaging[J/OL]. Radar Science and Technology, 2025: 1−8(2025-04-15)[2025-05-03]. http://kns.cnki.net/kcms/detail/34.1264.TN.20250414.1848.007.html (in Chinese).
    [98]
    成媛媛. 基于无人机高光谱图像的舰船尾迹检测方法研究及应用[D]. 大连: 大连海事大学, 2020. doi: 10.26989/d.cnki.gdlhu.2020.000456.

    CHENG Y Y. Research and application of ship wake detection method based on UAV hyperspectral image[D]. Dalian: Dalian Maritime University, 2020. doi: 10.26989/d.cnki.gdlhu.2020.000456 (in Chinese).
    [99]
    徐东, 杨健, 徐亚范. 基于机器学习的SAR图像目标识别方法研究[J]. 微电子学与计算机, 2004, 21(7): 110–111,146. doi: 10.3969/j.issn.1000-7180.2004.07.029

    XU D, YANG J, XU Y F. Method and study of machine learning based SAR image target recognition[J]. Microelectronics & Computer, 2004, 21(7): 110–111,146 (in Chinese). doi: 10.3969/j.issn.1000-7180.2004.07.029
    [100]
    刘倩倩, 李轲. 基于深度学习的水下目标尾迹探测技术研究[J/OL]. 光通信研究, 1-8

    4-06-11]. (查阅网上资料, 未找到本条文献信息, 请确认) LIU Q Q, LI K. Research on wake detection of underwater target based on deep learning technology[J/OL]. Study on Optical Communications, 1-8[2024-06-11] (in Chinese).
    [101]
    马帅, 王勋龙, 王丽, 等. 海上试验场建设现状分析及经验借鉴[J]. 中国工程咨询, 2023(4): 46−51. doi: 10.3969/j.issn.1009-5829.2023.04.013.

    MA S, WANG X L, WANG L, et al. Analysis of the current status and experience in the construction of offshore test sites[J]. China Engineering Consultants, 2023(4): 46−51. doi: 10.3969/j.issn.1009-5829.2023.04.013 (in Chinese). (查阅网上资料,未找到本条文献英文翻译信息,请确认)

Catalog

    Article views (127) PDF downloads (0) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return