Objectives Under complex environmental conditions, unmanned surface vehicles (USVs) may deviate from the target course. In order to improve the anti-jamming ability and actual navigation stability, and achieve accurate track control, an improved USV track control method is proposed.
Methods According to the influence on navigation signals caused by the environment, track control is analyzed in two cases of GPS signal: effective and invalid. A track control method based on a fuzzy control variable ship length ratio line-of-sight (LOS) algorithm and active disturbance rejection control (ADRC) algorithm is then realized on an autonomous controllable platform, and a lake test is carried out using a USV with dual propellers and dual rudders.
Results The simulation results show that this method can meet the requirements of track control, and the heading can be stabilized quickly without frequent rudder swinging after turning. The proposed method can complete track control in real environments with an average track error of about 0.1 m and variance of about 0.03.
Conclusions The lake test results verify the feasibility and effectiveness of the proposed algorithm in practical engineering applications.