推进轴系-船体结构低频弯曲振动耦合特性

李增光

李增光. 推进轴系-船体结构低频弯曲振动耦合特性[J]. 中国舰船研究, 2016, 11(3): 74-78. DOI: 10.3969/j.issn.1673-3185.2016.03.013
引用本文: 李增光. 推进轴系-船体结构低频弯曲振动耦合特性[J]. 中国舰船研究, 2016, 11(3): 74-78. DOI: 10.3969/j.issn.1673-3185.2016.03.013
LI Zengguang. The bending vibration characteristic of a propulsion shafting and hull structure coupled system at low frequencies[J]. Chinese Journal of Ship Research, 2016, 11(3): 74-78. DOI: 10.3969/j.issn.1673-3185.2016.03.013
Citation: LI Zengguang. The bending vibration characteristic of a propulsion shafting and hull structure coupled system at low frequencies[J]. Chinese Journal of Ship Research, 2016, 11(3): 74-78. DOI: 10.3969/j.issn.1673-3185.2016.03.013

推进轴系-船体结构低频弯曲振动耦合特性

详细信息
    通讯作者:

    李增光(通信作者),男,1982年生,博士,工程师。研究方向:舰船推进系统设计及振动噪声控制。E-mail:22102106@qq.com

  • 中图分类号: U664.2

The bending vibration characteristic of a propulsion shafting and hull structure coupled system at low frequencies

知识共享许可协议
推进轴系-船体结构低频弯曲振动耦合特性李增光,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要: 为分析水面舰船推进轴系与船体结构的低频弯曲耦合振动问题,利用有限元法建立了推进轴系-船体结构耦合系统的数学模型,计算系统的垂向及水平向弯曲振动固有特性,并与利用简化模型得到的计算结果进行了对比分析。结果表明:在推进轴系第1阶弯曲振动固有频率以下频段,推进轴系-船体结构系统主要体现为船体梁振动,推进轴系跟随船体梁运动;在推进轴系的每阶振动固有频率附近,由于存在一个固有频率非常接近的船体梁振动模态,故在该频段桨-轴系统与船体梁有较强的耦合作用;在船体梁的质量及截面面积惯性矩远大于轴系对应参数的情况下,仅分析推进轴系自身的低频固有振动特性时,将船体结构简化为刚性安装基础所带来的误差很小,但是推进轴系简化模型不能反映推进轴系-船体结构的耦合振动模态及多轴系时的反相位振动模态。
    Abstract: In this paper, a finite element simulation model of the propulsion shafting and hull structure system is developed for analyzing the coupled bending vibration characteristic at low frequencies. The natural frequencies and modal shapes are analyzed through numerical simulation and are then compared with those from simplified simulation models. Simulation results show that at frequencies lower than the natural frequency of the first bending vibration mode, the coupled system vibrates under the hull-beam mode, and the shafting follows the hull. Near each natural frequency of the shafting, a vibration mode of hull structure also appears, and, therefore, the propeller-shafting's vibration can be transferred to the hull structure effectively. If the mass and cross-section area moment of the hull are far larger than those of shafts, and when the vibration modes of propulsion shafting are the only research subjects, the hull structure can be treated as a rigid body with little error. However, the coupled vibration mode and the shafts' anti-phase vibration mode may not be correctly reflected.
  • [1] 秦春云, 杨志荣, 饶柱石, 等. 船舶推进轴系纵向振动抑制研究[J]. 噪声与振动控制, 2013, 33(3): 147-152.

    QIN Chunyun, YANG Zhirong, RAO Zhushi, et al. Study on suppression of the longitudinal vibration of ship's propulsion shafting system[J]. Noise and Vibration Control, 2013, 33(3): 147-152.

    [2] 沈小寒. 大功率复杂推进轴系扭振特性的研究[D]. 上海: 上海交通大学, 2013.
    [3] 刘刚, 吴炜, 饶春晓, 等. 基于传递矩阵法的船舶轴系回旋振动计算研究[J]. 中国舰船研究, 2010, 5(1): 60-63.

    LIU Gang, WU Wei, RAO Chunxiao, et al. Numerical calculation of whirling vibration of ship shafts based on transfer matrices method[J]. Chinese Journal of Ship Research, 2010, 5(1): 60-63.

    [4] 周平, 赵德有. 动态刚度阵法在船体总振动计算中的应用[J]. 船舶力学, 2006, 10(4): 126-132.

    ZHOU Ping, ZHAO Deyou. Application of dynamic stiffness matrix method to compute the vibration of ship hull[J]. Journal of Ship Mechanics, 2006, 10(4): 126-132.

    [5] 王显正, 赵德有, 孙超, 等. 船舶总振动固有频率实用算法[J]. 中国舰船研究, 2007, 2(1): 56-58.

    WANG Xianzheng, ZHAO Deyou, SUN Chao, et al. Improved algorithm for the natural frequencies of ship vibration[J]. Chinese Journal of Ship Research, 2007, 2(1): 56-58.

    [6] 朱理, 庞福振, 康逢辉. 螺旋桨激励力下的舰船振动特性分析[J]. 中国造船, 2011, 52(2): 8-15.

    ZHU Li, PANG Fuzhen, KANG Fenghui. Vibration characteristic of a warship subjected to propeller excitation[J]. Shipbuilding of China, 2011, 52(2): 8-15.

    [7] 高菊, 陈美霞. 偶极子源与力激励作用下截顶锥形壳振动与声辐射研究[J]. 中国舰船研究, 2011, 6(1): 46-51

    , 55. GAO Ju, CHEN Meixia. Sound and vibration of a truncated conical shell under excitation of dipole source and force[J]. Chinese Journal of Ship Research, 2011, 6(1): 46-51, 55.

    [8] 李栋梁. 轴系-艇体耦合系统振动声辐射分析与实验研究[D]. 上海: 上海交通大学, 2012.
    [9] 谢基榕, 徐利刚, 沈顺根, 等. 推进器激励船舶振动辐射声计算方法[J]. 船舶力学, 2011, 15(5): 563-569.

    XIE Jirong, XU Ligang, SHEN Shungen, et al. Calculational method for radiating sound excited by vibration of ship propeller[J]. Journal of Ship Mechanics, 2011, 15(5): 563-569.

    [10]

    DYLEJKO P G, KESSISSOGLOU N J, TSO Y, et al. Optimisation of a resonance changer to minimise the vibration transmission in marine vessels[J]. Journal of Sound and Vibration, 2007, 300(1/2): 101-116.

    [11]

    MERZ S, KINNS R, KESSISSOGLOU N. Structural and acoustic responses of a submarine hull due to propeller forces[J]. Journal of Sound and Vibration, 2009, 325(1/2): 266-286.

    [12]

    CARESTA M, KESSISSOGLOU N J. Reduction of hull-radiated noise using vibroacoustic optimization of the propulsion system[J]. Journal of Ship Research, 2011, 55(3): 149-162.

    [13]

    MURAWSKI L. Shaft line alignment analysis taking ship construction flexibility and deformations into consideration[J]. Marine Structures, 2005, 18(1): 62-84.

    [14] 严新平, 李志雄, 袁成清, 等. 考虑船体变形耦合作用的船舶推进系统建模与控制[J]. 船海工程, 2011, 40(1): 60-63.

    YAN Xinping, LI Zhixiong, YUAN Chengqing, et al. Modelling and control of marine propulsion system coupled with hull deformation[J]. Ship and Ocean Engineering, 2011, 40(1): 60-63.

    [15] 秦丽. 大型船舶推进轴系功率流分析理论与方法研究[D]. 武汉: 武汉理工大学, 2014.
    [16] 帕利O M, 巴依佐夫Γ B, 沃罗涅诺夫E Я. 船舶结构力学手册[M]. 徐秉汉, 徐绚, 徐铭麒, 译. 北京: 国防工业出版社, 2002.
  • 期刊类型引用(4)

    1. 伦宇博,李增光. 基于动刚度法的水面船舶桨-轴-船体耦合系统. 造船技术. 2024(02): 30-34+62 . 百度学术
    2. 杨小钢,邓义斌,朱汉华,范世东. 基于机器学习的船舶多支撑轴系智能装调方法. 中国造船. 2021(03): 184-191 . 百度学术
    3. 黄志伟. 推进轴系纵向振动主动控制技术综述. 舰船科学技术. 2018(21): 1-8 . 百度学术
    4. 周凌波,段勇,孙玉东,魏强. 水面船舶推进轴系回旋振动研究综述. 中国造船. 2017(03): 233-244 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  382
  • HTML全文浏览量:  61
  • PDF下载量:  280
  • 被引次数: 7
出版历程
  • 收稿日期:  2015-07-29
  • 网络出版日期:  2023-02-12
  • 刊出日期:  2016-06-07

目录

    /

    返回文章
    返回