The Model for Damage Assessment and Repair of the Sonar System in Battlefield Based on Bayesian Networks
-
摘要: 为了解决战场环境下的声呐系统损伤评估及修复(SSBDAR)问题,本文研究了战场损伤评估及修复模型。针对舰艇声呐系统战场损伤评估的因果推理特性,建立了基于贝叶斯网络的战场损伤评估模型,提出了基于贝叶斯网络的评估流程,给出了基于贝叶斯网络的评估决断算法。该模型利用贝叶斯网络对各评估修复节点进行分析,能够解决损伤信息不确定性,而且充分利用舰艇声呐系统各节点的损伤信息,提高了模型评估及修复效率,是解决舰艇声呐系统战场损伤评估及修复问题的一个有效途径。Abstract: This paper proposes a model in order to solve the problem of Sonar System Battlefield Damage Assessment and Repair (SSBDAR) in battlefields. According to causal reasoning of sonar system for warships, a battlefield damage evaluation model is developed based on Bayesian networks and the related evaluation procedure is put forward, as well as the related algorithm for decision-making is presented. With this model, each repair site is evaluated and the uncertainty of damage information is determined. This can make the process of evaluation and repair more efficient, and can be an effective way to handle such problems in the sonar system of warsh ips.
-
Keywords:
- warship sonar system /
- battlefield damage /
- assessment and repair /
- Bayesian networks
-
-
[1] SONG S J. Probability models for assessing the value of battle damage assessment in defense against sequential theater missile attacks [D]. Naval Postgraduate School,California,USA 1996. [2] GAVER D P,JACOBS P A. Probality models for battle damage assessment (Simple shoot-look-shooted beyond)[R]. AD-A329 197,Naval Postgraduate School,Aug 1997.
[3]ROACH LISA K. A methodology for battle damage repair (BDR)analysis,AD-A276 083[R]. Army Research Laboratory,1994.[3] 赵春华,严新平,赵新泽. 基于贝叶斯网络的内燃机故障诊断研究[J]. 武汉理工大学学报(交通科学与工程版),2005,29(3):335-338. [4] MIL-PRF-63003B(TM). Performance Specification Manuals,Technical: Battlefield Damage Assessment and Repair[S]. April 1998. [5] 王润生,贾希胜,刘利,等. 战场损伤分析过程及存在问题研究[J]. 兵工学报,2004,25(2):139-142. [6] 陈健,孙冀辉,米双山.基于贝叶斯网络的装备部件战斗损伤研究[J].航空兵器,2005(4):6-9. [7] Depantment of the Army technical manual. Battlefield Damage Assessment and Repair for Helicopter,Attack,AH-64A Apach [M]. Microfich,Supt of Docs US GPO,1996. [8] MURPHY K P. Dynamic bayesian networks: pepresentation,inference and learning[D]. PhD thesis. UC Berkeley,Computer Science Division,2002.
[10]STEPHENSON T A. An introduction to bayesian network theory and usage[R]. IDIA P Research Reprot,2001.[9] 肖秦琨,高嵩,高晓光. 动态贝叶斯网络推理学习理论及应用[M]. 北京:国防工业出版社,2007. [10] 朱慧明,韩玉启. 贝叶斯多元统计推断理论[M]. 北京:科学出版社,2006.
计量
- 文章访问数: 384
- HTML全文浏览量: 73
- PDF下载量: 956