仿生航行器鳍−艇几何参数对推进性能的影响

Effects of fin-hull geometric parameters on propulsion performance in bionic vehicles

  • 摘要:
    目的 旨在系统量化鳍−艇几何构型对仿生波动鳍(MPF)推进性能的影响机制,以解决现有研究在不同构生航行器几何参数缺乏统一分析方面的问题。
    方法 首先,建立包含艇体与一对波动鳍的通用参数化几何模型,并创新性地引入鳍宽与艇宽之比β作为核心无量纲几何参数;然后,基于此模型,通过高保真CFD数值模拟,分析不同β值下航行器的推进性能与流场结构。
    结果 结果显示,β值对推进性能具有非线性的显著影响:存在一个最优的β值范围可使推进效率最大化,β值过小会导致推力不足,过大则会因鳍−艇间强干扰诱发流动分离而增加阻力;β值能显著调控纵倾力矩的大小,对航行器姿态稳定性构成关键约束。
    结论 所做研究明确了β参数在效率与稳定性之间的设计权衡关系,所建立的参数化模型与揭示的影响规律可为仿生航行器的外形设计提供定量的理论依据,并为后续多参数耦合优化及自航性能研究奠定坚实的基础。

     

    Abstract:
    Objective This study aims to systematically quantify the influence of fin-hull geometric configuration on the propulsion performance of bionic undulating fins (media and/or paired fin propulsion, MPF), addressing the lack of a unified analysis of geometric parameters across different bionic underwater vehicles in existing research.
    Methods To this end, a universal parametric geometric model incorporating the hull and a pair of undulating fins was established, which innovatively introduces the ratio of fin width to hull width β as the core dimensionless geometric parameter. Based on this model, high-fidelity CFD numerical simulations were conducted to analyze the propulsion performance and flow field structure of the vehicle under different β values.
    Results The results indicate that γ has a nonlinear and significant impact on propulsion performance: an optimal range of β values exists to maximize propulsion efficiency. Excessively small β values lead to insufficient thrust generation, while excessively large β values increase drag due to strong fin-hull interactions that induce flow separation. Furthermore, β significantly modulates the magnitude of the pitching moment, imposing a critical constraint on the attitude stability of the vehicle.
    Conclusions This study clarifies the design trade-off between efficiency and stability governed by the β parameter. The established parametric model and the revealed influencing mechanisms provide a quantitative theoretical basis for the shape design of bionic underwater vehicles and lay a solid foundation for subsequent research on multi-parameter coupling optimization and self-propulsion performance.

     

/

返回文章
返回