SSD-YOLO:一种基于新型抗噪与方向敏感注意力融合的合成孔径雷达船舶检测方法

SSD-YOLO:A SAR Ship Detection via a Novel Anti-Noise and Direction-Sensitive Attention Fusion Approach

  • 摘要: 【目的】为解决合成孔径雷达(SAR)图像中的强噪声和目标尺度差异问题,本文提出了一种改进型YOLOv8n模型——SSD-YOLO,旨在提升复杂海洋场景下的船舶检测性能。【方法】该模型以YOLOv8n为基线,融合了三大创新模块。SAR_SPPF模块利用Ghost卷积和双径池化高效抗噪。C2f_SimAM模块嵌入无参数SimAM注意力机制,强化目标响应。C2f_DSConv模块则采用方向敏感的深度可分离卷积,精细捕捉舰船纹理与方向信息。【结果】在SSDD数据集上,模型实现了97.0%的精确率、96.4%的召回率,mAP50达99.0%,mAP50-95达74.3%。同时在HRSID数据集上进行了泛化实验。该模型参数量约3M,FLOPs为7.7G,保持轻量化。消融实验证明了各模块的有效性。【结论】本研究通过融合轻量级抗噪、目标强化及方向敏感特征捕捉策略,为SAR舰船检测提供了一种高效、鲁棒的解决方案。

     

    Abstract: Objectives To address the issues of strong noise and target scale variation in Synthetic Aperture Radar (SAR) imagery, this paper proposes an improved YOLOv8n model, SSD-YOLO, to enhance ship detection performance in complex marine scenarios. Methods Based on YOLOv8n, the model integrates three innovative modules. The SAR_SPPF module utilizes Ghost Convolution and dual-path pooling for efficient noise resistance. The C2f_SimAM module embeds a parameter-free SimAM attention mechanism to strengthen target responses. The C2f_DSConv module employs direction-sensitive depthwise separable convolutions to capture fine ship textures and directional information.Results On the SSDD dataset, the model achieved 97.0% precision, 96.4% recall, 99.0% mAP50, and 74.3% mAP50-95. Experiments on generalization were also conducted on the HRSID dataset.With approximately 3M parameters and 7.7G FLOPs, the model remains lightweight. Ablation studies confirmed the effectiveness of each module. Conclusions This research provides an efficient and robust solution for SAR ship detection by combining lightweight anti-noise, target enhancement, and direction-sensitive feature capture strategies.

     

/

返回文章
返回