双大语言模型核心驱动的自适应船舶航行智能体架构

Dual large language model core-driven adaptive framework for ship navigation agents

  • 摘要:
    目的 当前船舶航行决策系统,在面对未预定义的航行情景时,难以展现出优越的导航性能。鉴于大语言模型(LLM)在未知场景处理方面的广泛适用性,提出一种双大语言模型核心驱动的自适应船舶航行智能体架构(Nav-DLLC)来改善上述问题。
    方法 首先,Nav-DLLC采用基于响应与行动(ReAct)的提示词工程,以大参数LLM为智能体控制核心,将复杂的航行任务分解为易于管理的子任务,并调用外部工具收集航行信息,减少LLM的错误响应。随后,以低秩自适应(LoRA)技术微调的小参数LLM作为避碰决策核心,用于处理非结构化外部数据,生成符合《国际海上避碰规则》的瞭望分析与避碰决策建议。
    结果 仿真实验表明,Nav-DLLC在传统船舶避碰任务及非结构化动态场景中均表现出卓越性能,其避碰准确率为86%,行为合规率为90%,显著优于DeepSeek-R1等LLM基线及动态窗口(DWA)、人工势场(APF)传统方法。决策核心的单次决策时延为11.13 s,高于传统方法的0.73 s,但仍处于避碰决策安全时间窗口内。
    结论 Nav-DLLC弥合了传统导航系统与LLM技术之间的差距,为复杂航行环境提供了安全高效的智能决策范式。

     

    Abstract:
    Objective  Current ship navigation decision-making systems struggle to demonstrate superior performance in undefined sailing scenarios. Given the broad applicability of large language models (LLMs) in unknown scenarios, this study proposes a dual-LLM-core-driven adaptive ship navigation agent architecture (Nav-DLLC) to address this issue.
    Method Nav-DLLC employs ReAct-based prompting to decompose complex navigation tasks into manageable subtasks and invoke external tools for information collection, reducing LLM errors. Subsequently, a small-parameter LLM fine-tuned with low-rank adaptation (LoRA) serves as the collision avoidance core, processing unstructured data to generate COLREG-compliant decisions.
    Results Simulation experiments show that Nav-DLLC achieves outstanding performance in both traditional ship collision avoidance tasks and unstructured dynamic scenarios. Its collision avoidance accuracy is 86%, and its behavior compliance rate is 90%, significantly outperforming LLM baselines and traditional methods such as the Dynamic Window Approach (DWA) and Artificial Potential Field (APF). The decision core's single-decision latency is 11.13 seconds, higher than the 0.73 seconds of traditional methods, yet still within the safe time window for collision avoidance decision-making.
    Conclusions Nav-DLLC bridges the gap between traditional navigation systems and LLM technology, providing a safe and efficient intelligent decision-making paradigm for complex navigation environments and promoting the intelligent development of ship navigation.

     

/

返回文章
返回