基于自适应CYCBD算法和EWPDNet的船舶柴油机气门间隙异常故障诊断

A fault diagnosis method of marine diesel engine valve clearance based on adaptive CYCBD and EWPDNet

  • 摘要:
    目的 针对传统故障诊断方法存在噪声抑制能力不足、故障特征提取不充分的问题,提出一种结合自适应最大二阶循环平稳盲解卷积(CYCBD)与高效宽路径密集连接网络(EWPDNet)的故障诊断方法。
    方法 首先,针对CYCBD中循环频率和滤波器长度最优值难以确定的问题,通过包络谐波乘积谱估计循环频率,利用Alpha进化算法对CYCBD滤波器长度进行寻优,实现自适应降噪及故障特征成分增强;同时,在DenseNet模型中增加并行卷积路径,引入高效通道注意力(ECA)模块增强特征表达能力,得到EWPDNet模型,从而有效解决柴油机气门间隙异常时复杂特征提取不充分的问题。
    结果 实验结果表明,所提方法在不同噪声条件下均能达到93%以上的准确率,平均诊断率达95.88%。
    结论 研究成果可为船舶柴油机气门间隙异常故障诊断提供参考。

     

    Abstract:
    Objectives Traditional fault diagnosis methods for abnormal valve clearance in marine diesel engines struggle with noise suppression and feature extraction.
    Methods To address this, we propose a method combining adaptive maximum Second order cyclostationarity blind deconvolution (CYCBD) and an efficient wide path dense network (EWPDNet). First, envelope harmonic product spectrum estimates the cyclic frequency, while the Alpha evolution algorithm optimizes CYCBD filter length, enabling adaptive noise reduction and feature enhancement. Then, EWPDNet integrates a parallel convolution path and an efficient channel attention module into DenseNet to improve complex feature extraction.
    Results Experimental results show that the proposed method achieves over 93% accuracy under various noise conditions, with an average diagnosis rate of 95.88%.
    Conclusions The findings provide a basis for diagnosing abnormal valve clearance faults in marine diesel engines.

     

/

返回文章
返回