基于多物理模型融合仿真的波浪对船舶动力系统加速性能的影响

Influence of waves on the performance of ship power systems based on multi-physics fusion simulation model

  • 摘要:
    目的 提出一种融合螺旋桨水动力特性与船用柴油机热力学特性的船舶动力系统融合仿真方法,旨在揭示波浪扰动对船舶动力系统性能的影响规律。
    方法 通过构建SST k-ω湍流模型与流体体积(VOF)模型,分析自由液面高度对螺旋桨敞水特性的影响规律。采用基于Seiliger热力学循环的柴油机平均值模型模拟船舶主机稳态和动态运行过程,得到主机热力学参数及其变化规律。基于动力系统融合模型,研究波浪环境下船舶加速过程中动力系统的动态响应特性。
    结果 结果显示,风浪工况会改变螺旋桨淹没的深度,导致螺旋桨推力最大损失18.34%,影响了螺旋桨推力输出的稳定性与船舶运行安全性;船舶主机在加速过程中,排气温度和过量的空气系数受波浪扰动会产生剧烈波动,最大值分别达1 370 K与0.558 9,超过了主机的安全运行边界。
    结论 所提方法通过融合螺旋桨水动力模型与柴油机热力学模型,可准确预测波浪环境下船舶动力系统动态性能的变化规律,揭示螺旋桨水动力参数与主机热力学参数的耦合响应特性,再结合船舶主机运行边界分析,可为船舶动力系统在极端海况下的控制策略研究提供理论支撑。

     

    Abstract:
    Objectives This study proposes an integrated simulation method for marine power systems combining propeller hydrodynamic characteristics with diesel engine thermodynamic properties, aiming to reveal the influence of wave disturbances on system performance.
    Methods The SST k-ω turbulence model and volume of fluid (VOF) method were employed to analyze free surface effects on propeller open-water characteristics. A Seiliger-cycle-based mean-value engine model simulated steady/dynamic operations of the main engine, obtaining thermodynamic parameters. The integrated power system model investigated dynamic responses during ship acceleration in waves.
    Results Under wave conditions, alterations in propeller immersion depth result in a maximum thrust reduction of 18.34%. This reduction affects the stability of propeller thrust output and poses a threat to the operational safety of the vessel. During the acceleration phase of the ship's main engine, exhaust temperature and excess air ratio fluctuate significantly due to wave disturbances, reaching maximum values of 1 370 K and 0.558 9, respectively. These values exceed the safe operational limits for the main engine. Consequently, measures must be implemented to alleviate the impact of waves on the main engine's performance to ensure the safety and efficiency of the ship's operation.
    Conclusions The proposed method accurately predicts dynamic performance variations in waves by coupling hydrodynamic and thermodynamic models, revealing parameter interaction mechanisms. Combined with operational boundary analysis, it provides theoretical support for developing control strategies under extreme sea conditions.

     

/

返回文章
返回