机械激励下水下夹芯板-声腔-板耦合系统的声振分析

刘文轩, 颜钊, 朱翔, 李天匀, 唐文兵

刘文轩, 颜钊, 朱翔, 李天匀, 唐文兵. 机械激励下水下夹芯板-声腔-板耦合系统的声振分析[J]. 中国舰船研究. DOI: 10.19693/j.issn.1673-3185.04420
引用本文: 刘文轩, 颜钊, 朱翔, 李天匀, 唐文兵. 机械激励下水下夹芯板-声腔-板耦合系统的声振分析[J]. 中国舰船研究. DOI: 10.19693/j.issn.1673-3185.04420
Vibro-acoustic Analysis of Underwater Sandwich Panel-Acoustic Cavity-Plate Coupled System Under Mechanical Excitation[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.04420
Citation: Vibro-acoustic Analysis of Underwater Sandwich Panel-Acoustic Cavity-Plate Coupled System Under Mechanical Excitation[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.04420
刘文轩, 颜钊, 朱翔, 李天匀, 唐文兵. 机械激励下水下夹芯板-声腔-板耦合系统的声振分析[J]. 中国舰船研究. CSTR: 32390.14.j.issn.1673-3185.04420
引用本文: 刘文轩, 颜钊, 朱翔, 李天匀, 唐文兵. 机械激励下水下夹芯板-声腔-板耦合系统的声振分析[J]. 中国舰船研究. CSTR: 32390.14.j.issn.1673-3185.04420
Vibro-acoustic Analysis of Underwater Sandwich Panel-Acoustic Cavity-Plate Coupled System Under Mechanical Excitation[J]. Chinese Journal of Ship Research. CSTR: 32390.14.j.issn.1673-3185.04420
Citation: Vibro-acoustic Analysis of Underwater Sandwich Panel-Acoustic Cavity-Plate Coupled System Under Mechanical Excitation[J]. Chinese Journal of Ship Research. CSTR: 32390.14.j.issn.1673-3185.04420

机械激励下水下夹芯板-声腔-板耦合系统的声振分析

基金项目: 国家自然科学基金资助项目(52371318);

Vibro-acoustic Analysis of Underwater Sandwich Panel-Acoustic Cavity-Plate Coupled System Under Mechanical Excitation

知识共享许可协议
机械激励下水下夹芯板-声腔-板耦合系统的声振分析刘文轩,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要: 【目的】本文旨在建立适用于弹性边界约束的水下夹芯板-声腔-背板的声振耦合模型,并探讨了背板在机械激励下,背板阻尼、背板参数以及声腔参数对于结构及声腔响应的影响。【方法】首先,根据薄板理论建立了矩形平板的动力学模型,使用Layerwise理论建立阻尼板和夹芯板的动力学模型。采用改进的傅里叶级数作为板结构的位移试函数,借助人工边界弹簧模拟弹性边界约束。基于能量变分原理推导出弹性边界约束下平板、阻尼板和夹芯板的响应函数。将夹芯板、平板(阻尼板)与封闭声腔和半无限声场耦合,建立了能够适应不同结构边界约束和声腔边界条件下的水下夹芯板-声腔-平板(阻尼板)耦合模型,并提出耦合模型的声振响应求解方法。【结果】阻尼板在高频段能有效减少系统响应。背板厚度的增加使得背板的均方振速整体减小,在中低频段内能有效降低声腔中面均方声压。声腔高度对于结构-声腔耦合系统的影响主要集中在系统的首阶响应峰值之前。【结论】本文建立的水下夹芯板-声腔-平板耦合动力学模型具有较高的准确性,能够为声呐腔声学设计提供参考。
    Abstract: [Objectives] This study aims to establish a vibro-acoustic coupling model for underwater sandwich panels coupled with an acoustic cavity and backplate under elastic boundary constraints, and investigates the effects of backplate damping, backplate parameters, and acoustic cavity parameters on structural and acoustic responses under mechanical excitation. [Methods] First, a dynamic model for rectangular plates is developed based on thin-plate theory, while the Layerwise theory is adopted to formulate dynamic models for damped plates and sandwich panels. The modified Fourier series is employed as the displacement trial function for the plate structures, with elastic boundary constraints simulated using artificial boundary springs. Response functions for plates, damped plates, and sandwich plates under elastic boundaries are derived via energy variational principles. By coupling the sandwich panel and plate (damped plate) with a sealed acoustic cavity and a semi-infinite acoustic field, a coupled underwater sandwich panel-acoustic cavity-plate (damped plate) model adaptable to diverse structural boundary constraints and acoustic cavity conditions is established, along with a solution method for vibro-acoustic responses. [Results] The damped plate effectively reduces system responses in high-frequency ranges. Increasing the backplate thickness decreases the overall mean-square vibration velocity of the backplate and significantly reduces the mean-square acoustic pressure within the acoustic cavity at mid-to-low frequencies. The acoustic cavity height primarily influences the coupled structural-acoustic system before the first-order resonance peak.[Conclusions] The proposed underwater sandwich panel-acoustic cavity-plate coupling model demonstrates high accuracy and provides a valuable reference for the acoustic design of sonar cavities.
计量
  • 文章访问数:  55
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-18
  • 官网发布日期:  2025-05-25

目录

    /

    返回文章
    返回