面向细粒度舰船识别的视觉属性提示词学习方法研究

Visual Attribute based Prompt Learning Method for Fine-grained Ship Recognition

  • 摘要: 【目的】舰船图像识别技术在海洋领域有着重要作用。针对舰船图像识别任务中存在的强干扰、数据稀缺及深度学习方法语义特征建模不足等问题,【方法】提出一种基于视觉属性的提示词学习机制(Visual Attribute Prompt Learning, VAPT)。通过构建大规模预训练视觉属性词表,引入多分支交叉注意力机制(Multi-head Cross-Attention Mechanism, MCA)实现属性匹配和选择过程,用于与深度视觉模型对齐,有效提升模型对舰船关键特征的识别能力。【结果】实验在自建的5万量级舰船图像数据集上验证表明,该方法相较基线模型准确率提升约4%。【结论】研究结果为复杂海洋环境下的目标识别任务提供了新的低成本特征解耦与知识迁移技术路径, 对智能海上监测系统具有重要意义。

     

    Abstract: ObjectiveShip image recognition technology plays a significant role in marine domain. A Visual Attribute Prompt Learning (VAPT) mechanism is proposed in this study to address the challenges of strong interference, data scarcity, and inadequate semantic feature modeling encountered in deep learning methods for ship image recognition tasks. MethodsThe framework establishes a large-scale pre-trained visual attribute codebook and incorporates a Multi-head Cross-Attention Mechanism (MCA) to achieve attribute matching and selection procedures, enabling effective alignment with deep visual models to enhance their capability in identifying critical ship features. ResultsExperimental results on a self-constructed dataset containing approximately 50,000 ship images demonstrates that the proposed method achieves approximately 4% accuracy improvement compared to baseline models. ConclusionThe research outcomes provide a novel low-cost technical pathway for feature decoupling and knowledge transfer in target recognition tasks under complex marine environments, offering significant implications for intelligent maritime monitoring systems.

     

/

返回文章
返回