基于频带注意力网络的齿轮箱小样本故障诊断方法

Small sample fault diagnosis method of gearbox based on frequency band attention network

  • 摘要:
    目的 基于深度学习的故障诊断方法一般需依赖大量的故障样本,为实现小样本场景下的齿轮箱故障精准诊断,提出一种新的基于频带注意力网络的诊断方法。
    方法 首先,通过重构编码层将振动信号转化为易于分类的子频带编码信号;然后,构建本征带注意力层,以充分挖掘各子频带编码信号中的代表性时频特征;最后,使用多特征融合模块整合时频特征信息,以实现小样本条件下的故障识别。
    结果 齿轮箱故障模拟实验台的验证结果表明,所提方法在小样本条件下的故障诊断精度可达99.85%,优于对比模型。
    结论 研究成果可为小样本条件的齿轮箱故障诊断提供参考。

     

    Abstract:
    Objectives Deep learning-based fault diagnosis methods generally require a large number of fault samples. To achieve accurate gearbox fault diagnosis under small-sample scenarios, a novel diagnosis method based on frequency band attention network is proposed.
    Methods Initially, through the reconstruction-encoding layer, the vibration signals are transformed into sub-band encoded signals that are easy to classify; Subsequently, the intrinsic band attention layer is constructed to fully mine the representative time-frequency features from sub-band encoded signals; Finally, the multiple feature fusion module is used to integrate the time-frequency feature information for fault recognition under small-sample conditions.
    Results The validation results on a gearbox fault simulation test bench show that the proposed method achieves a fault diagnosis accuracy of 99.85% under small-sample conditions, outperforming the comparison models.
    Conclusions The research results can provide a reference for the fault diagnosis of gearbox under small sample conditions.

     

/

返回文章
返回