Abstract:
The purpose of this work is to optimize the communication architecture for existing remotely-controlled ships to meet the challenges of network connectivity in diverse environments (e.g., ports, deep-sea, and polar regions), aiming to address the issues of insufficient coverage, limited bandwidth, and high communication latency. First, the applicability and technical characteristics of shore-based and satellite communication networks are systematically summarized, while the diverse wireless communication requirements of remotely-controlled ships operating in different water areas are comprehensively analyzed. Based on this, a satellite-shore-based integrated network architecture that fuses multiple wireless communication systems is proposed. It aims to deeply integrate satellite and shore-based networks, thereby constructing an intelligent and stable shipboard communication system. By revealing the huge application potential of the satellite-shore-based integrated network architecture, which offers economic and service quality advantages for remotely-controlled ships in complex navigation environments, and by sorting out relevant key technologies and existing bottleneck issues, the proposed integrated communication network architecture is expected to provide a theoretical reference for optimizing the communication of remotely-controlled ships under diverse network conditions.