随机点蚀作用下大开口箱型梁的垂向弯曲剩余强度研究

Study on the residual vertical bending strength of large open-box girders under random pitting corrosion

  • 摘要: 【目的】现有研究较少考虑腐蚀分布的不确定性对船体结构承载能力的影响,以及老化船体结构在垂向弯曲作用下的剩余极限强度,这在一定程度上限制了相关评估方法的可靠性和适用性。【方法】基于现有研究中的实测船体板点蚀深度数据,引入了实测腐蚀船体板的点腐蚀深度分布模型,以此提出一种随机点腐蚀建模方法,构建用于评估腐蚀大开口箱型梁剩余极限强度的数值模型。该方法通过Python在ABAQUS中的二次开发,能够在严格控制相对腐蚀体积等多腐蚀参数的前提下,确保生成符合目标分布的点蚀深度分布模型,并自动化集成整个数值模拟过程,最后通过非线性有限元分析完成对受垂向弯矩作用下的腐蚀大开口箱型梁进行参数化分析。【结果】结果表明,在符合规则点蚀深度分布的相同腐蚀体积损失下,不同点蚀半径的四组模型中极限强度的最大平均值和最小平均值之间的差异为0.89%;当相对点蚀面积或相对点蚀深度线性下降时,极限强度折减系数θ的均值呈线性下降趋势,最低分别为0.83和0.85。在点蚀深度分布符合Weibull分布,并且相对点蚀体积损失最高达到5%的相同情况下,由于点蚀在空间分布上的不确定性,箱型梁的极限强度最大下降16.7%,最小下降12.6%。拟合了箱型梁在不同相对腐蚀体积下的极限强度概率分布模式,推导出腐蚀箱型梁在垂向弯矩作用下极限强度的经验公式。【结论】提供了一种能够生成符合目标点蚀深度分布特征的腐蚀箱型梁模型建立方法,并在数值模拟中实现了全自动化集成。这种结合点蚀空间分布不确定性与非线性有限元方法的评估手段,为腐蚀船体结构在垂向弯矩作用下的剩余极限强度提供了更为准确的预测。

     

    Abstract: Objectives Existing studies rarely consider the impact of the uncertainty in corrosion distribution on the load-bearing capacity of hull structures, as well as the residual ultimate strength of aging hull structures under vertical bending, which to some extent limits the reliability and applicability of related assessment methods. Methods Based on empirical pitting depth data of hull plates from existing studies, this approach introduces a depth distribution model of actual corrosion pits on hull plates, enabling a stochastic pitting corrosion modeling method. It establishes a numerical model to evaluate the residual ultimate strength of corroded large-opened box girders. Developed as a secondary Python application within ABAQUS, this method allows precise control over multiple corrosion parameters, such as relative corrosion volume, ensuring the generation of pit depth distributions aligned with target distributions. The entire numerical simulation process integrates automation, culminating in a nonlinear finite element analysis that parametrically evaluates corroded large-opened box girders under vertical bending moments. Results The results indicate that, under the same corrosion volume loss with a regulated pitting depth distribution, the difference between the maximum and minimum average ultimate strength among the four groups of models with varying pitting radii is 0.89%. When the relative pitting area or relative pitting depth decreases linearly, the mean value of the ultimate strength reduction factor θ declines linearly, reaching a minimum of 0.83 and 0.85, respectively. With a Weibull distribution of pitting depth and a relative pitting volume loss up to 5%, the ultimate strength of the box girder decreases by a maximum of 16.7% and a minimum of 12.6%, attributed to the spatial variability of pitting distribution. Additionally, a probabilistic distribution model for the ultimate strength under varying relative corrosion volumes is fitted. Conclusions A method for constructing corroded box girder models that generate target pitting depth distribution characteristics is proposed, achieving fully automated integration in numerical simulations. This approach, which combines the uncertainty of pitting spatial distribution with nonlinear finite element analysis, provides a more accurate prediction of the residual ultimate strength of corroded hull structures under vertical bending moments.

     

/

返回文章
返回