吕舒键, 韩承灶, 杨睿. 螺旋桨空化噪声特性及空化发声机理的数值研究[J]. 中国舰船研究. DOI: 10.19693/j.issn.1673-3185.04119
引用本文: 吕舒键, 韩承灶, 杨睿. 螺旋桨空化噪声特性及空化发声机理的数值研究[J]. 中国舰船研究. DOI: 10.19693/j.issn.1673-3185.04119
Numerical Investigation of Propeller Cavitation Noise Characteristics and Sound Generation Mechanism[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.04119
Citation: Numerical Investigation of Propeller Cavitation Noise Characteristics and Sound Generation Mechanism[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.04119

螺旋桨空化噪声特性及空化发声机理的数值研究

Numerical Investigation of Propeller Cavitation Noise Characteristics and Sound Generation Mechanism

  • 摘要: 目的 空化作为绕螺旋桨流动中最主要的噪声源之一,会显著提升远场辐射噪声,带来诸多不利影响。为了有效地抑制螺旋桨空化噪声,有必要对螺旋桨空化噪声特性及空化发声机理开展研究。方法 本文基于大涡模拟(LES)和可渗透的FW-H(PFW-H)方程远场解相结合的方法,对PPTC螺旋桨空化流场和声场进行了高精度仿真,重点研究了空化对远场噪声频谱分布特性的影响及空化发声机制。结果 模拟的水动力场结果与试验数据吻合较好。研究发现,螺旋桨周围片空化(SC)和梢涡空化(TVC)的演变过程均存在显著的周期性特征,因此均贡献了高强度的主频噪声。片空化在演变时存在初生和溃灭过程,该过程伴随着高强度的瞬时空化体积变化,从而导致了高频宽带噪声的加剧。梢涡空化在演变时出现了体积回弹行为,该行为诱发了高强度的连续声压脉动,因此在高于主频的频率处诱发了显著的噪声峰值。结论 本文为工程中螺旋桨空化噪声控制策略的提出和实现提供了理论依据。

     

    Abstract: Objectives Cavitation, as one of the most important noise sources around the propeller, significantly enhances the far-field radiated noise and brings many adverse effects. In order to effectively suppress the propeller cavitation noise, it is necessary to carry out research on the propeller cavitation noise characteristics and sound generation mechanism. Methods In this study, the cavitation noise around a PPTC propeller is simulated using the Large Eddy Simulation (LES) coupled with the permeable Ffowcs Williams and Hawkings (PFW-H) equation, focusing on the effect of cavitation on the spectral characteristics of far-field noise and the cavitation noise generation mechanism. Results The predicted hydrodynamic results agree well with the experimental data. It is found that there is a significant periodicity in the evolution of both sheet cavity (SC) and tip vortex cavity (TVC) around the propeller, and thus both contribute high intensity dominant frequency noise. Sheet cavity evolves with incipient and collapsing processes, which are accompanied by transient cavity volume variations, leading to an intensification of high-frequency broadband noise. Tip vortex cavity evolves with a volume rebound behavior, which induces high-intensity continuous acoustic pressure pulsations, and thus induces significant noise peaks at frequencies above the dominant frequency. Conclusions This paper provides a theoretical basis for the proposal and implementation of propeller cavitation noise control strategies in engineering.

     

/

返回文章
返回