朱仁杰, 宋恩哲, 姚崇, 柯赟. 强噪声背景下基于CEEMDAN与BRECAN的船舶电机故障诊断[J]. 中国舰船研究. DOI: 10.19693/j.issn.1673-3185.04059
引用本文: 朱仁杰, 宋恩哲, 姚崇, 柯赟. 强噪声背景下基于CEEMDAN与BRECAN的船舶电机故障诊断[J]. 中国舰船研究. DOI: 10.19693/j.issn.1673-3185.04059
Marine motor fault diagnosis based on CEEMDAN and BRECAN under strong noise conditions[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.04059
Citation: Marine motor fault diagnosis based on CEEMDAN and BRECAN under strong noise conditions[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.04059

强噪声背景下基于CEEMDAN与BRECAN的船舶电机故障诊断

Marine motor fault diagnosis based on CEEMDAN and BRECAN under strong noise conditions

  • 摘要: 摘 要:【目的】船舶实际航行中机舱存在的背景噪声导致故障诊断方法在实际使用时存在精度差的问题,针对上述问题,提出一种基于CEEMDAN与RECAN的船舶电机故障诊断方法。【方法】首先,含噪声电机故障信号通过自适应噪声的完全集合经验模态分解(CEEMDAN)分解成多个本征模态分量(IMF),并基于去趋势波动分析(DFA)划分IMF中的噪声主导信号和信息主导信号,对于噪声主导信号使用经验小波变化(EWT)进行降噪;然后,构建贝叶斯残差高效通道注意力网络(BRECAN),基于变分贝叶斯原理使用网络参数代替传统网络点估计训练方式,建模拟合噪声对模型训练的干扰并通过RECA模块引导网络提取故障差异特征;最后,通过电机故障模拟实验台,验证所提方法的有效性。【结果】结果表明在强噪声下所提方法能够实现船舶电机故障的精确诊断,在 条件下仍保持90%以上的诊断精度。【结论】研究成果为强噪声下船舶电机故障诊断提供参考。

     

    Abstract: Abstract:Objectives The background noise in the engine room during actual ship navigation leads to poor accuracy in fault diagnosis methods. To address this issue, proposes a ship motor fault diagnosis method based on CEEMDAN and RECAN. Methods Firstly, the noisy motor fault signal is decomposed into multiple intrinsic mode components (IMFs) through adaptive noise complete ensemble empirical mode decomposition (CEEMDAN), and the noise dominant signal and information dominant signal in the IMF are divided based on detrended fluctuation analysis. Empirical wavelet transform (EWT) is used to denoise the noise dominant signal; Then, construct a BRECAN model, use network parameters to model and fit the interference of noise on model training, and guide the network to extract fault differential features through the RECA module; Finally, the effectiveness of the proposed method was verified through a motor fault simulation experimental platform. Results The results show that the proposed method can achieve accurate diagnosis of ship motor faults under strong noise, and still maintain a diagnostic accuracy of over 90% under . Conclusions The research results provide reference for the diagnosis of ship motor faults under strong noise.

     

/

返回文章
返回