周羽, 黄亮, 周春辉, 文元桥, 黄亚敏, 汪嘉慈. 基于轨迹特征图像深度学习的船舶时空行为分类识别方法[J]. 中国舰船研究. DOI: 10.19693/j.issn.1673-3185.03939
引用本文: 周羽, 黄亮, 周春辉, 文元桥, 黄亚敏, 汪嘉慈. 基于轨迹特征图像深度学习的船舶时空行为分类识别方法[J]. 中国舰船研究. DOI: 10.19693/j.issn.1673-3185.03939
Classification and recognition of spatio-temporal behavior of ships based on deep learning of[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.03939
Citation: Classification and recognition of spatio-temporal behavior of ships based on deep learning of[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.03939

基于轨迹特征图像深度学习的船舶时空行为分类识别方法

Classification and recognition of spatio-temporal behavior of ships based on deep learning of

  • 摘要: 【目的】针对现有船舶行为识别方法在处理大规模船舶轨迹数据时存在效率低、准确率差的问题,提出基于轨迹特征图像建模与深度学习的船舶行为识别及分类方法。【方法】考虑船舶轨迹多尺度特征,提出船舶轨迹的自适应网格化处理方法,构建航速、加速度、航向、转向率和轨迹点密度等显著特征的视

     

    Abstract: Objective To address the issues of low efficiency and inaccurate ship behavior recognition when handling large-scale ship trajectory data, a method for recognizing and classifying ship behaviour based on trajectory feature image modelling and deep learning is proposed. Method This research

     

/

返回文章
返回