虞颜竹, 李一兵, 叶方. 双IRS辅助海洋MEC系统联合任务卸载与资源分配[J]. 中国舰船研究. DOI: 10.19693/j.issn.1673-3185.03914
引用本文: 虞颜竹, 李一兵, 叶方. 双IRS辅助海洋MEC系统联合任务卸载与资源分配[J]. 中国舰船研究. DOI: 10.19693/j.issn.1673-3185.03914
Joint task offloading and resource allocation for double-IRS-aided offshore MEC systems[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.03914
Citation: Joint task offloading and resource allocation for double-IRS-aided offshore MEC systems[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.03914

双IRS辅助海洋MEC系统联合任务卸载与资源分配

Joint task offloading and resource allocation for double-IRS-aided offshore MEC systems

  • 摘要: 随着海事网络不断发展,近海监测终端的计算密集型任务呈指数级增长,由于自身通信及计算资源限制难以处理日益增长的多样化业务需求,在预算有限的上行卸载场景下,传统海洋通信模型很难满足终端在节能高效且低成本的同时有效提升系统计算总任务量,因此本文引入双智能反射面(Double-IRS)协作架构,通过部署两个分布式IRS中继协作用户将任务卸载到岸基MEC服务器。本文考虑基站端接收波束成形、双IRS联合相移矩阵、用户发射功率以及CPU计算频率的联合优化,设计了一种联合任务卸载与资源分配算法,以最大化通信和计算资源限制下系统的计算任务总量。通过引入块坐标下降(BCD)思想分解该非凸优化问题,并采用基于最大比合并(MRC)、拉格朗日乘子法以及对分搜索的高效交替优化算法求解。仿真结果表明,所提出的双IRS辅助海上协同卸载方案可有效提升系统计算任务总量,并取得较基准方案显著的性能提升。

     

    Abstract: As maritime networks continue to expand, The compute-intensive tasks of offshore monitoring terminals are growing exponentially. Due to the limitations of their own communication and computing resources, it is difficult to handle the increasingly diverse business needs. In the limited budget uplink offloading scenario, Traditional ocean communication models find it difficult to improve the system's total computational workload while meeting energy, efficiency, and cost requirements.Therefore, this paper introduces a Double-Intelligent Reflecting Surface (IRS) collaborative architecture, which deploys two distributed IRS relay collaborative users to offload tasks to the onshore MEC server. This paper considers the joint optimization of base station receiving beamforming, dual IRS joint phase shift matrix, user transmission power, and CPU computing frequency and designs a joint task offloading and resource allocation algorithm to maximize the total computational task of the system under communication and computing resource constraints. This non-convex optimization problem is decomposed by introducing the block coordinate descent (BCD) idea and solved by an efficient alternating optimization algorithm based on maximal ratio combining (MRC), Lagrange multiplier method and bisection search. The simulation results show that the proposed dual IRS assisted offshore collaborative offloading scheme improves the system's performance., 随着海事网络的不断扩展,海上监控终端的计算密集型任务呈指数级增长。由于自身通信和计算资源的限制,很难处理日益多样化的业务需求。在有限预算的上行卸载场景下,传统的海洋通信模型难以在满足能量、效率和成本要求的同时提高系统的总计算量,为此提出了一种双智能反射面(IRS)协作架构,部署两个分布式IRS中继协作用户,将任务卸载到岸上MEC服务器上.考虑基站接收波束形成、双IRS联合相移矩阵、用户发射功率和CPU计算频率的联合优化,设计了一种联合任务卸载和资源分配算法,在通信和计算资源约束下最大化系统的总计算任务。通过引入块坐标下降(BCD)思想,将非凸优化问题分解,并采用基于最大比合并(MRC)、拉格朗日乘子法和对分搜索的交替优化算法求解。仿真结果表明,提出的双IRS辅助海上协同卸载方案提高了系统的性能。, 随着海事网络的不断扩展,海上监控终端的计算密集型任务呈指数级增长。由于自身通信和计算资源的限制,很难处理日益多样化的业务需求。在有限预算的上行卸载场景下,传统的海洋通信模型难以在满足能量、效率和成本要求的同时提高系统的总计算量,为此提出了一种双智能反射面(IRS)协作架构,部署两个分布式IRS中继协作用户,将任务卸载到岸上MEC服务器上.考虑基站接收波束形成、双IRS联合相移矩阵、用户发射功率和CPU计算频率的联合优化,设计了一种联合任务卸载和资源分配算法,在通信和计算资源约束下最大化系统的总计算任务。通过引入块坐标下降(BCD)思想,将非凸优化问题分解,并采用基于最大比合并(MRC)、拉

     

/

返回文章
返回