宋利飞, 王毓清, 彭伟, 李培勇, 刘禹杉, 张永峰. 基于SVR的船舶简化分离型模型水动力系数辨识研究[J]. 中国舰船研究. DOI: 10.19693/j.issn.1673-3185.03832
引用本文: 宋利飞, 王毓清, 彭伟, 李培勇, 刘禹杉, 张永峰. 基于SVR的船舶简化分离型模型水动力系数辨识研究[J]. 中国舰船研究. DOI: 10.19693/j.issn.1673-3185.03832
Study on Hydrodynamic Derivative Identification of Ship Simplified Modular Model Based on Support Vector Regression (SVR)[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.03832
Citation: Study on Hydrodynamic Derivative Identification of Ship Simplified Modular Model Based on Support Vector Regression (SVR)[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.03832

基于SVR的船舶简化分离型模型水动力系数辨识研究

Study on Hydrodynamic Derivative Identification of Ship Simplified Modular Model Based on Support Vector Regression (SVR)

  • 摘要: 【目的】近年来系统辨识在船舶的整体型操纵运动数学建模的水动力系数辨识过程中展现了良好的效果,但在分离型模型方面的应用则较少,而分离型模型在广域速度的船舶运动预报与控制中有其独特的重要作用。【方法】本文针对分离型模型提出了一种基于支持向量回归机(SVR)的白箱建模方法,在样本数据基础之上提出了一种数据预处理策略以提升样本的有效性,再通过Lasso回归算法筛选对模型影响较显著的水动力系数以减小多重共线性的程度,然后针对分离型模型推导水动力系数辨识的回归模型,并采差分法和数据中心化重构回归模型以削弱参数漂移对水动力辨识误差的影响。【结果】仿真试验表明,所用方法对水动力系数的辨识取得了较高的精度,所建立模型的预报能力和泛化性较好。【结论】通过SVR算法可以成功辨识出MMG模型的水动力导数。

     

    Abstract: ObjectivesIn recent years, system identification has demonstrated favorable outcomes in the mathematical modeling of hydrodynamic coefficients for whole-ship models. However, its application in modular models remains limited, even though these models play a unique and significant role in the broad-speed range prediction and control of ship motions. Methods This paper proposes a white-box modeling method based on Support Vector Regression (SVR) for MMG-type model. A data preprocessing strategy is introduced to enhance the effectiveness of the sample data.Further,introducing Lasso regression to select the most influential hydrodynamic coefficients and alleviate multicollinearity. Subsequently, a regression model for hydrodynamic derivatives identification is derived for MMG model. Data centralization and differencing method are employed to reconstruct the regression model, mitigating the impact of parameter drift on hydrodynamic derivatives identification errors. ResultsSimulation experiments demonstrate that the proposed method achieves high precision in identifying hydrodynamic coefficients. The established model exhibits favorable predictive capability and ?generalization performance.ConclusionsThe SVR algorithm successfully identifies hydrodynamic derivatives of the modular models.

     

/

返回文章
返回