基于改进扩展卡尔曼滤波算法的无人艇MMG模型参数辨识

Parameter identification of unmanned vehicle MMG model based on improved extended kalman filter

  • 摘要:
    目的 针对一艘喷水推进无人艇,为了构建准确的船舶操纵分离型数学模型(Mathematical Model Group,MMG),利用传统扩展卡尔曼滤波算法和改进扩展卡尔曼滤波算法结合实艇数据进行参数辨识。
    方法 首先,以传统EKF算法为基础,为了充分利用隐藏在历史数据中的有效信息,提出融合多新息理论和动态遗忘因子的改进EKF算法。然后,基于实艇数据,对MMG模型中的未知参数进行辨识。最后,将辨识得到的参数值代入建立的MMG模型中,输入与实艇数据相同的舵角和主机转速,通过仿真得到艏向角、纵向速度、横向速度、艏向角速度和位置信息数据,并进行对比分析。
    结果 结果表明,相比于传统EKF算法,改进EKF算法各项数据的均方根误差指标和对称平均绝对百分比误差指标都更接近于0,其中均方根误差指标最高降低了20.02%,对称平均绝对百分比误差指标最高降低了26.84%。
    结论 本文提出的改进扩展卡尔曼滤波算法具有更高的辨识精度,该算法所建立的无人艇MMG模型具有较高准确性。

     

    Abstract:
    Objectives In order to construct an accurate MMG (Mathematical Model Group)model for a water-jet propulsion unmanned surface vehicle, the traditional extended Kalman filter algorithm and improved extended Kalman filter algorithm are combined with the real boat data for parameter identification.
    Methods Firstly, based on the traditional EKF algorithm, in order to make full use of the effective information hidden in the historical data, an improved EKF algorithm combining multi-innovation theory and dynamic forgetting factor is proposed. Then, based on the real unmanned surface vehicle data, the unknown parameters in the MMG model are identified. Finally, the identified parameter values are brought back to the established MMG model, and the rudder angle and main engine speed identical with the real boat data are input. The bow angle, longitudinal speed, transverse speed, bow angular velocity and position information data are obtained through simulation, and the comparative analysis is carried out.
    Results The results show that compared with the traditional EKF algorithm, the root mean squared error index and the symmetric mean absolute percentage error index of the improved EKF algorithm are closer to 0, in which the root mean squared error index is reduced by 20.02% at the highest, and the symmetric mean absolute percentage error index is reduced by 26.84% at the highest.
    Conclusions The simulation results show that the improved extended Kalman filter algorithm has higher identification accuracy, which proves the accuracy of the MMG model established by the algorithm.

     

/

返回文章
返回