罗强军, 刘均, 江璞玉, 等. 船舶舱段结构大规模分解优化的约束调节及计算资源分配策略[J]. 中国舰船研究. DOI: 10.19693/j.issn.1673-3185.03677.
引用本文: 罗强军, 刘均, 江璞玉, 等. 船舶舱段结构大规模分解优化的约束调节及计算资源分配策略[J]. 中国舰船研究. DOI: 10.19693/j.issn.1673-3185.03677.
LUO Q J, LIU J, JIANG P Y, et al. Constraint adjustment and computational resource allocation strategies for decomposition-based large-scale optimization of ship cabin structures[J]. Chinese Journal of Ship Research(in Chinese). DOI: 10.19693/j.issn.1673-3185.03677.
Citation: LUO Q J, LIU J, JIANG P Y, et al. Constraint adjustment and computational resource allocation strategies for decomposition-based large-scale optimization of ship cabin structures[J]. Chinese Journal of Ship Research(in Chinese). DOI: 10.19693/j.issn.1673-3185.03677.

船舶舱段结构大规模分解优化的约束调节及计算资源分配策略

Constraint adjustment and computational resource allocation strategies for decomposition-based large-scale optimization of ship cabin structures

  • 摘要:
    目的 旨在提升船舶舱段大规模优化设计中应用分解优化方法的效果,提出一种约束渐进放松调节策略,以及一种综合考虑目标贡献度和约束裕度的计算资源分配策略。
    方法 关于约束渐进放松调节策略,该方法初始给定一个加严的约束限界,再逐步放松直到恢复至原约束限界值,以使所有子问题得到更充分优化;关于计算资源分配策略,该方法按照子问题对目标函数的贡献度和子问题的约束裕度,来综合分配优化计算资源;最后,将两种策略结合应用,分析两者的耦合效应。
    结果 相比原算法相比,在同等计算资源下,约束渐进放松调节策略和计算资源分配策略在原来优化结果的基础上,分别减重10.3%和7.0%,两策略结合应用下减重22.2%。
    结论 所提策略效果显著,在船舶结构大规模分解优化中有较大价值。

     

    Abstract:
    Objective To enhance the application effectiveness of the decomposition-based optimization method in the large-scale optimization design of ship cabin structures, a constraint progressive relaxation adjustment strategy and a computational resource allocation strategy are proposed that consider both the contribution of the sub-problem to the objective and the margin of constraints of the sub-problem.
    Methods Constraint progressive relaxation adjustment strategy: initially, a tightened constraint boundary is given and then gradually relaxed until it recovers to the original constraint boundary, enabling all sub-problems to be more fully optimized. Computational resource allocation strategy: optimization computing resources are comprehensively allocated based on the contribution of the sub-problem to the objective and the margin of constraints of the sub-problem. The two strategies are then combined and their coupling effects analyzed.
    Results  Compared with the original algorithm, under the same computational resources, the cabin weight is reduced by 10.3% and 7.0% when using the constraint progressive relaxation adjustment strategy and computational resource allocation strategy respectively, and the weight is reduced by 22.2% when both strategies are applied simultaneously, relative to the weight obtained by the original optimization method.
    Conclusion  The proposed strategies are effective and possess value for the decomposition-based large-scale optimization of ship structures.

     

/

返回文章
返回