Local strength analysis and structural optimization design of Ro-Ro ship's vehicle deck
-
摘要:目的
针对某滚装船所装载特殊车辆的载荷特征及最危险工况,提出车辆甲板结构轻量化设计方法及最优设计方案。
方法首先,采用有限元直接计算及参数化建模得到特殊车辆载荷作用下车辆甲板的危险工况;然后,基于混合整数序列二次规划(MISQP)算法,提出满足局部强度的车辆甲板结构轻量化设计方法;最后,针对某滚装船最危险装载工况,得到车辆甲板结构最优设计方案。
结果结果显示,所提优化设计方案较初始方案减重25.88%;车辆甲板的疲劳寿命循环次数为87 096次,局部强度稳定性和疲劳强度满足规范要求。
结论研究表明,合理布置车辆可显著减小结构的应力水平,优化甲板板厚是降低车辆甲板重量的最有效方案,所提轻量化设计方法可为同类型滚装船车辆甲板优化设计提供参考。
-
关键词:
- 车辆甲板 /
- 优化设计 /
- 混合整数序列二次规划算法 /
- 车辆载荷 /
- 疲劳寿命
Abstract:ObjectivesIn this study, a lightweight design method and optimal vehicle deck structure design scheme are proposed for a Ro-Ro ship based on the most hazardous working conditions under special vehicle load characteristics.
MethodsFirst, the hazardous working conditions of the vehicle deck under special vehicle loads are obtained by direct finite element calculation and parametric modeling. Second, based on the mixed-integer sequence quadratic programming algorithm, a lightweight design method for a vehicle deck structure that satisfies local strength is proposed. Finally, the optimal design scheme for the vehicle deck structure under the most dangerous loading conditions is obtained.
ResultsThe proposed optimal design scheme reduces the weight by 25.88% compared with the initial scheme, while the number of fatigue life cycles of the vehicle deck is 87 096 and the local strength stability and fatigue strength meet the specification requirements.
ConclusionsThe results of this study show that the reasonable arrangement of vehicles can significantly reduce the structural stress level of the vehicle deck, and the optimization of deck plate thickness is the most effective solution for reducing its weight. The proposed lightweight design method can provide useful references for the optimal design of vehicle decks for the same type of Ro-Ro ship.
-
-
表 1 车辆甲板局部结构参数
Table 1 Local structural parameters of vehicle deck
参数 数值 长度L/mm 12 000 宽度B/mm 6 000 板厚DT/mm 18 纵骨间距s/mm 400 纵骨跨距l/mm 2 000 纵桁间距d/mm 2 000 表 2 车辆参数
Table 2 Parameters of the vehicle
参数 履带式车辆 轮式车辆 轮印长度a/m 4 0.3 轮印宽度b/m 0.6 0.4 轴载Q/t 20 10 轴距η/m 4.0 轮距λ/m 2.8 2.4 垂向加速度av /(m∙s−2) 5.413 5.413 车辆载荷p/(kN∙m−2) 104.304 521.522 表 3 m,n的取值范围与工况
Table 3 The range of m and n values and working conditions
车辆
类型取值范围/mm 工况
数量/个m n 履带式
车辆1 000~7 000,增加量
为1 000,共7组数据1 100~1 500,增加量
为200,共3组数据21 轮式
车辆1 000~6 700,增加量
为950,共7组数据1 100~2 100,增加量
为500,共3组数据21 表 4 甲板旁纵桁与强横梁的T型材尺寸取值范围
Table 4 Range of T-profile dimensions of the longitudinal joist and strong crossbeam next to the deck
T型材
ST编号腹板高
/mm翼板宽
/mm腹板厚
/mm翼板厚
/mm剖面模数
/cm31 150 305 15 15 92.5 2 170 250 9 14 73.2 3 175 175 7 11 59.3 4 200 200 8 13 88.6 5 220 300 11 18 150.0 6 225 200 9 14 124.0 7 242 300 11 18 184.0 8 250 200 10 16 169.0 9 275 200 10 16 203.0 10 303 201 12 20 291.0 表 5 甲板纵骨的不等边角钢尺寸取值范围
Table 5 Range of unequal angle sizes for the longitudinal bones of the deck
纵骨SL编号 长边宽/mm 短边宽/mm 边厚度/mm 剖面模数/cm3 1 75 50 10 10.5 2 80 50 8 11.9 3 90 56 8 15.3 4 100 63 10 23.3 5 110 70 8 23.3 6 125 80 8 30.4 表 6 优化方案与初始方案参数对比
Table 6 Comparison of parameters between the optimized scheme and the initial plan
优化参数 初始方案 优化方案 百分比/% 甲板厚度DT/mm 18 12 −33.33 横梁数目NB/根 5 5 — 纵骨数目NL/根 12 9 −25.00 T型材编号ST 6 8 — 纵骨编号SL 4 5 — 最大正应力/MPa 211.3 176.1 −16.65 最大剪应力/MPa 64.12 56.20 −12.35 质量/t 14.06 10.42 −25.88 表 7 剖面模数参数表
Table 7 Table of profile modulus parameters
剖面模数参数 数值 系数kz 1 纵骨跨距l/m 2.4 纵桁间距d/m 2 轮印宽度b/m 0.6 轮印长度a/m 4 车辆载荷p/(kN∙m−2) 104.304 系数ω 12 应力σ/MPa 231.94 纵桁间距d与轮印宽度b中的小值c/m 0.6 纵骨跨距l与轮印长度a中的小值e/m 2.4 -
[1] 曾鸣. 登陆舰车辆甲板结构设计和强度校核规范建立的研究[D]. 上海: 上海交通大学, 2007. ZENG M. Study of the structure design and the establishment of the strength criterion of the vehicle deck of the landing craft[D]. Shanghai: Shanghai Jiao Tong University, 2007 (in Chinese).
[2] 马红阳, 蒋嘉奇, 王德禹. 轮印载荷作用下加筋板强度分析及试验加载设计[C]//中国造船工程学会船舶力学学术委员会测试技术学组2021年学术会议论文集. 昆明: 中国造船工程学会船舶力学学术委员会测试技术学组, 2021: 380−390. MA H Y, JIANG J Q, WANG D Y. Response characteristics analysis and experimental design of stiffened plate under the patch load[C]//2021 Academic Conference of Testing Technology Group of Ship Mechanics Academic Committee of China Shipbuilding Engineering Society. Kunming, China, 2021: 390−390 (in Chinese).
[3] 何市伟, 刘晖, 张梗林, 等. 载重轮胎的轮印载荷分布特性试验研究[J]. 中国舰船研究, 2021, 16(6): 140–150. doi: 10.19693/j.issn.1673-3185.02121 HE S W, LIU H, ZHANG G L, et al. Experimental study on wheel load distribution characteristics of truck tires[J]. Chinese Journal of Ship Research, 2021, 16(6): 140–150 (in Chinese). doi: 10.19693/j.issn.1673-3185.02121
[4] PAWARA M U, ALAMSYAH, IKHWANI R J, et al. A finite element analysis of structural strength of ferry Ro-Ro's car deck[J]. INVOTEK: Jurnal Inovasi Vokasional dan Teknologi, 2022, 22(1): 47–60. doi: 10.24036/invotek.v22i1.959
[5] ROMANOFF J, VARSTA P, REMES H. Laser-welded web-core sandwich plates under patch loading[J]. Marine Structures, 2007, 20(1/2): 25–48. doi: 10.1016/j.marstruc.2007.04.001
[6] 康杰豪, 贺远松, 谭开忍, 等. 轮印载荷下多跨梁最危险工况分析与优化[J]. 中国舰船研究, 2016, 11(6): 56–64. doi: 10.3969/j.issn.1673-3185.2016.06.009 KANG J H, HE Y S, TAN K R, et al. Worst-case analysis and optimization of multi-span beams under multiple patch loading[J]. Chinese Journal of Ship Research, 2016, 11(6): 56–64 (in Chinese). doi: 10.3969/j.issn.1673-3185.2016.06.009
[7] ANDRIC J, PREBEG P, PALAVERSA M, et al. Influence of different topological variants on optimized structural scantlings of passenger ship[J]. Marine Structures, 2021, 78: 102981. doi: 10.1016/j.marstruc.2021.102981
[8] 谭林森, 曾广武, 张小铭. 舰船甲板板架稳定性分析与结构优化设计[J]. 华中工学院学报, 1986(1): 53–58. TAN L S, ZENG G W, ZHANG X M. Stability analysis and optimal design of ship deck grillage structure[J]. Journal of Central China University of Technology, 1986(1): 53–58 (in Chinese).
[9] JANG C D, SEO S I, KIM S K. A study on the optimum structural design of surface effect ships[J]. Marine Structures, 1996, 9(5): 519–544. doi: 10.1016/0951-8339(95)00008-9
[10] Det Norske Veritas. Rules for classification of ships Part 3 Chapter 1 [S]. Norway: Det Norske Veritas, 2016: 200−202.
[11] Det Norske Veritas. Rules for classification-high speed and light craft Part 5 Chapter 2[S]. Norway: Det Norske Veritas, 2022: 184−190.
[12] Lloyd's Register. Rules and regulations for the classification of naval ships[S]. London: Lloyd's Register Group Limited, 2018: 32−34.
[13] American Bureau of Shipping. Rules for building and classing: steel vessels for service on rivers and intracoastal waterways[S]. Spring: American Bureau of Shipping, 2023: 327−336.
[14] 中国船级社. 钢质海船入级规范[S]. 北京: 人民交通出版社, 2022: 500−506. China Classification Society. Steel seagoing ships classification code[S]. Beijing: People's Transportation Press, 2022: 500−506 (in Chinese).
[15] EXLER O, LEHMANN T, SCHITTKOWSKI K. MISQP: a Fortran subroutine of a trust region SQP algorithm for mixed-integer nonlinear programming-user's guide[R]. Bayreuth: Department of Computer Science, University of Bayreuth, 2012: 167−179.