Processing math: 100%

滚装船车辆甲板局部强度分析与结构优化设计

李梓淇, 乐京霞, 冯硕秋

李梓淇, 乐京霞, 冯硕秋. 滚装船车辆甲板局部强度分析与结构优化设计[J]. 中国舰船研究, 2024, 19(增刊 2): 1–9. DOI: 10.19693/j.issn.1673-3185.03653
引用本文: 李梓淇, 乐京霞, 冯硕秋. 滚装船车辆甲板局部强度分析与结构优化设计[J]. 中国舰船研究, 2024, 19(增刊 2): 1–9. DOI: 10.19693/j.issn.1673-3185.03653
LI Z, YUE J X, FENG S Q. Local strength analysis and structural optimization design of Ro-Ro ship's vehicle deck[J]. Chinese Journal of Ship Research, 2024, 19(Supp 2): 1–9 (in Chinese). DOI: 10.19693/j.issn.1673-3185.03653
Citation: LI Z, YUE J X, FENG S Q. Local strength analysis and structural optimization design of Ro-Ro ship's vehicle deck[J]. Chinese Journal of Ship Research, 2024, 19(Supp 2): 1–9 (in Chinese). DOI: 10.19693/j.issn.1673-3185.03653
李梓淇, 乐京霞, 冯硕秋. 滚装船车辆甲板局部强度分析与结构优化设计[J]. 中国舰船研究, 2024, 19(增刊 2): 1–9. CSTR: 32390.14.j.issn.1673-3185.03653
引用本文: 李梓淇, 乐京霞, 冯硕秋. 滚装船车辆甲板局部强度分析与结构优化设计[J]. 中国舰船研究, 2024, 19(增刊 2): 1–9. CSTR: 32390.14.j.issn.1673-3185.03653
LI Z, YUE J X, FENG S Q. Local strength analysis and structural optimization design of Ro-Ro ship's vehicle deck[J]. Chinese Journal of Ship Research, 2024, 19(Supp 2): 1–9 (in Chinese). CSTR: 32390.14.j.issn.1673-3185.03653
Citation: LI Z, YUE J X, FENG S Q. Local strength analysis and structural optimization design of Ro-Ro ship's vehicle deck[J]. Chinese Journal of Ship Research, 2024, 19(Supp 2): 1–9 (in Chinese). CSTR: 32390.14.j.issn.1673-3185.03653

滚装船车辆甲板局部强度分析与结构优化设计

基金项目: 国家自然科学基金资助项目(52171320)
详细信息
    作者简介:

    李梓淇,男,2000 年生,硕士生。研究方向:船舶结构安全与可靠性。E-mail:qizi.li@whut.edu.cn

    乐京霞,女,1977 年生,博士,教授,博士生导师。研究方向:船舶结构安全与可靠性。E-mail:j.yue@whut.edu.cn

    通讯作者:

    乐京霞

  • 中图分类号: U661.43

Local strength analysis and structural optimization design of Ro-Ro ship's vehicle deck

知识共享许可协议
滚装船车辆甲板局部强度分析与结构优化设计李梓淇,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:
    目的 

    针对某滚装船所装载特殊车辆的载荷特征及最危险工况,提出车辆甲板结构轻量化设计方法及最优设计方案。

    方法 

    首先,采用有限元直接计算及参数化建模得到特殊车辆载荷作用下车辆甲板的危险工况;然后,基于混合整数序列二次规划(MISQP)算法,提出满足局部强度的车辆甲板结构轻量化设计方法;最后,针对某滚装船最危险装载工况,得到车辆甲板结构最优设计方案。

    结果 

    结果显示,所提优化设计方案较初始方案减重25.88%;车辆甲板的疲劳寿命循环次数为87 096次,局部强度稳定性和疲劳强度满足规范要求。

    结论 

    研究表明,合理布置车辆可显著减小结构的应力水平,优化甲板板厚是降低车辆甲板重量的最有效方案,所提轻量化设计方法可为同类型滚装船车辆甲板优化设计提供参考。

    Abstract:
    Objectives 

    In this study, a lightweight design method and optimal vehicle deck structure design scheme are proposed for a Ro-Ro ship based on the most hazardous working conditions under special vehicle load characteristics.

    Methods 

    First, the hazardous working conditions of the vehicle deck under special vehicle loads are obtained by direct finite element calculation and parametric modeling. Second, based on the mixed-integer sequence quadratic programming algorithm, a lightweight design method for a vehicle deck structure that satisfies local strength is proposed. Finally, the optimal design scheme for the vehicle deck structure under the most dangerous loading conditions is obtained.

    Results 

    The proposed optimal design scheme reduces the weight by 25.88% compared with the initial scheme, while the number of fatigue life cycles of the vehicle deck is 87 096 and the local strength stability and fatigue strength meet the specification requirements.

    Conclusions 

    The results of this study show that the reasonable arrangement of vehicles can significantly reduce the structural stress level of the vehicle deck, and the optimization of deck plate thickness is the most effective solution for reducing its weight. The proposed lightweight design method can provide useful references for the optimal design of vehicle decks for the same type of Ro-Ro ship.

  • 图  1   车辆甲板单元结构示意图

    Figure  1.   Vehicle deck unit structure schematic

    图  2   车辆轮印示意图

    Figure  2.   Vehicle wheel print diagram

    图  3   加速度分布系数

    Figure  3.   Acceleration distribution factor

    图  4   等效车辆载荷作用位置

    Figure  4.   Equivalent vehicle load position

    图  5   履带式车辆应力随参数mn变化的曲面图

    Figure  5.   Stress of tracked vehicle and its variation with parameter m , n

    图  6   危险工况应力云图

    Figure  6.   Stress contours of hazardous working condition

    图  7   车辆甲板优化流程

    Figure  7.   Vehicle deck optimization process

    图  8   车辆甲板质量迭代曲线

    Figure  8.   Iteration curves of vehicle deck mass

    图  9   优化前、后正应力云图对比

    Figure  9.   Comparison of direct stress contours before and after optimization

    图  10   优化前后剪应力云图对比

    Figure  10.   Comparison of shear stress contours before and after optimization

    图  11   设计变量与输出质量影响因子

    Figure  11.   Design variables and output quality impact factors

    图  12   车辆甲板载荷谱

    Figure  12.   Vehicle deck load spectrum

    图  13   优化前车辆甲板疲劳寿命对数云图

    Figure  13.   Vehicle deck fatigue life logarithm contour map before optimization

    图  14   优化后车辆甲板疲劳寿命对数云图

    Figure  14.   Vehicle deck fatigue life logarithm contour after optimization

    表  1   车辆甲板局部结构参数

    Table  1   Local structural parameters of vehicle deck

    参数 数值
    长度L/mm 12 000
    宽度B/mm 6 000
    板厚DT/mm 18
    纵骨间距s/mm 400
    纵骨跨距l/mm 2 000
    纵桁间距d/mm 2 000
    下载: 导出CSV

    表  2   车辆参数

    Table  2   Parameters of the vehicle

    参数 履带式车辆 轮式车辆
    轮印长度a/m 4 0.3
    轮印宽度b/m 0.6 0.4
    轴载Q/t 20 10
    轴距η/m 4.0
    轮距λ/m 2.8 2.4
    垂向加速度av /(m∙s−2) 5.413 5.413
    车辆载荷p/(kN∙m−2) 104.304 521.522
    下载: 导出CSV

    表  3   mn的取值范围与工况

    Table  3   The range of m and n values and working conditions

    车辆
    类型
    取值范围/mm 工况
    数量/个
    m n
    履带式
    车辆
    1 000~7 000,增加量
    为1 000,共7组数据
    1 100~1 500,增加量
    为200,共3组数据
    21
    轮式
    车辆
    1 000~6 700,增加量
    为950,共7组数据
    1 100~2 100,增加量
    为500,共3组数据
    21
    下载: 导出CSV

    表  4   甲板旁纵桁与强横梁的T型材尺寸取值范围

    Table  4   Range of T-profile dimensions of the longitudinal joist and strong crossbeam next to the deck

    T型材
    ST编号
    腹板高
    /mm
    翼板宽
    /mm
    腹板厚
    /mm
    翼板厚
    /mm
    剖面模数
    /cm3
    1 150 305 15 15 92.5
    2 170 250 9 14 73.2
    3 175 175 7 11 59.3
    4 200 200 8 13 88.6
    5 220 300 11 18 150.0
    6 225 200 9 14 124.0
    7 242 300 11 18 184.0
    8 250 200 10 16 169.0
    9 275 200 10 16 203.0
    10 303 201 12 20 291.0
    下载: 导出CSV

    表  5   甲板纵骨的不等边角钢尺寸取值范围

    Table  5   Range of unequal angle sizes for the longitudinal bones of the deck

    纵骨SL编号长边宽/mm短边宽/mm边厚度/mm剖面模数/cm3
    175501010.5
    28050811.9
    39056815.3
    4100631023.3
    511070823.3
    612580830.4
    下载: 导出CSV

    表  6   优化方案与初始方案参数对比

    Table  6   Comparison of parameters between the optimized scheme and the initial plan

    优化参数 初始方案 优化方案 百分比/%
    甲板厚度DT/mm 18 12 −33.33
    横梁数目NB/根 5 5
    纵骨数目NL/根 12 9 −25.00
    T型材编号ST 6 8
    纵骨编号SL 4 5
    最大正应力/MPa 211.3 176.1 −16.65
    最大剪应力/MPa 64.12 56.20 −12.35
    质量/t 14.06 10.42 −25.88
    下载: 导出CSV

    表  7   剖面模数参数表

    Table  7   Table of profile modulus parameters

    剖面模数参数 数值
    系数kz 1
    纵骨跨距l/m 2.4
    纵桁间距d/m 2
    轮印宽度b/m 0.6
    轮印长度a/m 4
    车辆载荷p/(kN∙m−2) 104.304
    系数ω 12
    应力σ/MPa 231.94
    纵桁间距d与轮印宽度b中的小值c/m 0.6
    纵骨跨距l与轮印长度a中的小值e/m 2.4
    下载: 导出CSV
  • [1] 曾鸣. 登陆舰车辆甲板结构设计和强度校核规范建立的研究[D]. 上海: 上海交通大学, 2007.

    ZENG M. Study of the structure design and the establishment of the strength criterion of the vehicle deck of the landing craft[D]. Shanghai: Shanghai Jiao Tong University, 2007 (in Chinese).

    [2] 马红阳, 蒋嘉奇, 王德禹. 轮印载荷作用下加筋板强度分析及试验加载设计[C]//中国造船工程学会船舶力学学术委员会测试技术学组2021年学术会议论文集. 昆明: 中国造船工程学会船舶力学学术委员会测试技术学组, 2021: 380−390.

    MA H Y, JIANG J Q, WANG D Y. Response characteristics analysis and experimental design of stiffened plate under the patch load[C]//2021 Academic Conference of Testing Technology Group of Ship Mechanics Academic Committee of China Shipbuilding Engineering Society. Kunming, China, 2021: 390−390 (in Chinese).

    [3] 何市伟, 刘晖, 张梗林, 等. 载重轮胎的轮印载荷分布特性试验研究[J]. 中国舰船研究, 2021, 16(6): 140–150. doi: 10.19693/j.issn.1673-3185.02121

    HE S W, LIU H, ZHANG G L, et al. Experimental study on wheel load distribution characteristics of truck tires[J]. Chinese Journal of Ship Research, 2021, 16(6): 140–150 (in Chinese). doi: 10.19693/j.issn.1673-3185.02121

    [4]

    PAWARA M U, ALAMSYAH, IKHWANI R J, et al. A finite element analysis of structural strength of ferry Ro-Ro's car deck[J]. INVOTEK: Jurnal Inovasi Vokasional dan Teknologi, 2022, 22(1): 47–60. doi: 10.24036/invotek.v22i1.959

    [5]

    ROMANOFF J, VARSTA P, REMES H. Laser-welded web-core sandwich plates under patch loading[J]. Marine Structures, 2007, 20(1/2): 25–48. doi: 10.1016/j.marstruc.2007.04.001

    [6] 康杰豪, 贺远松, 谭开忍, 等. 轮印载荷下多跨梁最危险工况分析与优化[J]. 中国舰船研究, 2016, 11(6): 56–64. doi: 10.3969/j.issn.1673-3185.2016.06.009

    KANG J H, HE Y S, TAN K R, et al. Worst-case analysis and optimization of multi-span beams under multiple patch loading[J]. Chinese Journal of Ship Research, 2016, 11(6): 56–64 (in Chinese). doi: 10.3969/j.issn.1673-3185.2016.06.009

    [7]

    ANDRIC J, PREBEG P, PALAVERSA M, et al. Influence of different topological variants on optimized structural scantlings of passenger ship[J]. Marine Structures, 2021, 78: 102981. doi: 10.1016/j.marstruc.2021.102981

    [8] 谭林森, 曾广武, 张小铭. 舰船甲板板架稳定性分析与结构优化设计[J]. 华中工学院学报, 1986(1): 53–58.

    TAN L S, ZENG G W, ZHANG X M. Stability analysis and optimal design of ship deck grillage structure[J]. Journal of Central China University of Technology, 1986(1): 53–58 (in Chinese).

    [9]

    JANG C D, SEO S I, KIM S K. A study on the optimum structural design of surface effect ships[J]. Marine Structures, 1996, 9(5): 519–544. doi: 10.1016/0951-8339(95)00008-9

    [10]

    Det Norske Veritas. Rules for classification of ships Part 3 Chapter 1 [S]. Norway: Det Norske Veritas, 2016: 200−202.

    [11]

    Det Norske Veritas. Rules for classification-high speed and light craft Part 5 Chapter 2[S]. Norway: Det Norske Veritas, 2022: 184−190.

    [12]

    Lloyd's Register. Rules and regulations for the classification of naval ships[S]. London: Lloyd's Register Group Limited, 2018: 32−34.

    [13]

    American Bureau of Shipping. Rules for building and classing: steel vessels for service on rivers and intracoastal waterways[S]. Spring: American Bureau of Shipping, 2023: 327−336.

    [14] 中国船级社. 钢质海船入级规范[S]. 北京: 人民交通出版社, 2022: 500−506.

    China Classification Society. Steel seagoing ships classification code[S]. Beijing: People's Transportation Press, 2022: 500−506 (in Chinese).

    [15]

    EXLER O, LEHMANN T, SCHITTKOWSKI K. MISQP: a Fortran subroutine of a trust region SQP algorithm for mixed-integer nonlinear programming-user's guide[R]. Bayreuth: Department of Computer Science, University of Bayreuth, 2012: 167−179.

图(14)  /  表(7)
计量
  • 文章访问数:  187
  • HTML全文浏览量:  33
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-15
  • 修回日期:  2024-01-14
  • 网络出版日期:  2024-01-18

目录

    /

    返回文章
    返回