数据驱动的船舶航迹跟踪控制方法研究

Research on data-driven ship trajectory tracking control method

  • 摘要:
    目的 针对存在船舶模型参数未知、外界扰动未知以及舵机约束等问题,提出一种基于数据驱动的在线辨识船舶参数,迭代解析计算最优控制量的航迹跟踪控制方法。
    方法 构建双螺旋桨船的三自由度动力学方程,通过采集船舶的运动数据,设计扩张状态观测器−多新息递推最小二乘交互式算法。再将辨识得到的船舶运动模型在采样周期内近似为定常线性模型,将船舶航迹跟踪问题转变成带约束和干扰的线性二次型优化控制问题。通过引入加权矩阵与罚函数,构建包含轨迹误差、外界干扰量和控制量约束不等式的二次型性能指标,并运用精细积分法获得矩阵黎卡提微分方程的解析解,得到有限时间状态调节器的迭代计算式。
    结果 实现了在线辨识船舶运动模型参数和估计未知扰动,并设计出一种“启动后不用管”的航迹跟踪控制算法,降低了参数辨识和控制算法对实验设计的严格要求。
    结论 采用MATLAB进行数值仿真并分析权重矩阵 \boldsymbolQ,\boldsymbolR 和S对航迹跟踪精度的影响,验证了参数辨识和控制算法的有效性。

     

    Abstract:
    Objective Aiming at the problems of unknown ship model parameters and external disturbance and servo constraints, this paper proposes a method for the data-driven online identification of ship parameters and iterative analytical calculation of the optimal control quantity of track tracking control.
    Method A three degrees of freedom dynamics equation of a double propeller ship is constructed, and the extended state observer-multiple innovation recursive least squares interactive algorithm is designed by collecting the motion data of the ship. By approximating the identified ship motion model to a time-invariant linear model in the sampling period, the ship trajectory tracking problem can be transformed into a linear quadratic optimization control problem with constraints and disturbances. The weighted matrix and penalty function are introduced to construct the quadratic performance index including trajectory error, external disturbance, and control constraint inequality. The precise integration method is then used to obtain the analytical solution of the matrix Riccati differential equation and the iterative calculation formula of the finite time state regulator.
    Results Th online identification of the ship motion model parameters and estimation of unknown disturbances are achieved, and a trajectory tracking control algorithm with "no need to worry after startup" is designed, reducing the strict requirements of parameter identification and control algorithms for experimental design.
    Conclusion Using MATLAB to carry out numerical simulation and analyze the influence of weight matrix \boldsymbolQ,\boldsymbolR and S on trajectory tracking accuracy, the results verify the effectiveness of the parameter identification and control algorithm.

     

/

返回文章
返回