李天臣, 周彦安, 裴志勇, 等. 基于改进蚁群算法的微气泡减阻气流量智能调控技术研究[J]. 中国舰船研究, 2024, 19(5): 1–8. DOI: 10.19693/j.issn.1673-3185.03498
引用本文: 李天臣, 周彦安, 裴志勇, 等. 基于改进蚁群算法的微气泡减阻气流量智能调控技术研究[J]. 中国舰船研究, 2024, 19(5): 1–8. DOI: 10.19693/j.issn.1673-3185.03498
LI T C, ZHOU Y A, PEI Z Y, et al. Intelligent airflow control technology for microbubble drag reduction based on improved ant colony optimization algorithm[J]. Chinese Journal of Ship Research, 2024, 19(5): 1–8 (in Chinese). DOI: 10.19693/j.issn.1673-3185.03498
Citation: LI T C, ZHOU Y A, PEI Z Y, et al. Intelligent airflow control technology for microbubble drag reduction based on improved ant colony optimization algorithm[J]. Chinese Journal of Ship Research, 2024, 19(5): 1–8 (in Chinese). DOI: 10.19693/j.issn.1673-3185.03498

基于改进蚁群算法的微气泡减阻气流量智能调控技术研究

Intelligent airflow control technology for microbubble drag reduction based on improved ant colony optimization algorithm

  • 摘要:
    目的 为了提高微气泡减阻技术的实际效能,基于改进蚁群算法开展了微气泡减阻气流量智能调控技术研究。
    方法 首先,基于微气泡减阻机理,利用自主研发船模样机开展微气泡减阻试验,获得不同航速下的理想最佳气流量;随后,采用改进蚁群算法,开发了气流量智能调控技术的软件系统;最后,将智能调控硬件系统应用于船模样机,开展自航模试验以验证该技术的有效性。
    结果 所研技术不仅可以有效地调控气流量达到最佳微气泡减阻效果,还可以监控航速变化对气流量进行自适应调控,使船舶在各种航速下均能保持最大减阻。
    结论 该技术可以提高微气泡减阻技术的自动化与智能程度,增强微气泡减阻技术的实际效能。

     

    Abstract:
    Objective  In order to improve the actual efficiency of microbubble drag reduction technology, this study develops intelligent airflow control technology for microbubble drag reduction based on an improved ant colony optimization (ACO) algorithm.
    Methods Based on the mechanism of microbubble drag reduction, the ideal optimal airflow rate at different speeds is obtained by carrying out microbubble drag reduction tests on a self-developed ship model prototype. The software system of intelligent airflow control technology is developed by employing the improved ACO algorithm. A self-propelled test on a ship model installed with an intelligent control hardware system is carried out to verify the actual drag reduction effect of this technology.
    Results The technology proposed in this study can effectively control the airflow to reach the optimal microbubble drag reduction condition, and can also monitor the speed change and adaptively control the airflow to achieve the best drag reduction conditions at various speeds.
    Conclusion  This technique improves the automation and intelligence level of microbubble drag reduction technology while enhancing its actual efficacy.

     

/

返回文章
返回