张炳焱, 张闯, 石振男, 等. 基于YOLO-FNC模型的轻量化船舶检测方法[J]. 中国舰船研究, 2024, 19(X): 1–8. DOI: 10.19693/j.issn.1673-3185.03487
引用本文: 张炳焱, 张闯, 石振男, 等. 基于YOLO-FNC模型的轻量化船舶检测方法[J]. 中国舰船研究, 2024, 19(X): 1–8. DOI: 10.19693/j.issn.1673-3185.03487
ZHANG B Y, ZHANG C, SHI Z N, et al. Lightweight ship detection method based on YOLO-FNC model[J]. Chinese Journal of Ship Research, 2024, 19(X): 1–8 (in Chinese). DOI: 10.19693/j.issn.1673-3185.03487
Citation: ZHANG B Y, ZHANG C, SHI Z N, et al. Lightweight ship detection method based on YOLO-FNC model[J]. Chinese Journal of Ship Research, 2024, 19(X): 1–8 (in Chinese). DOI: 10.19693/j.issn.1673-3185.03487

基于YOLO-FNC模型的轻量化船舶检测方法

Lightweight ship detection method based on YOLO-FNC model

  • 摘要:
    目的 针对交通密集的港口、船舶聚集的渔船作业区以及船岸混合交通场景等复杂环境,提出一种基于YOLO-FNC模型的轻量化且高效船舶检测方法。
    方法 首先,设计一种基于FasterNet思想的神经网络模块FasterNeXt,并将该模块替换YOLO模型中的C3模块,在不影响准确性的条件下确保运行速度更快。其次,将NAM注意力机制融入网络结构中,通过利用稀疏的权重惩罚抑制特征权重确保权重的计算更加高效。最后,提出新的边界框回归损失以加快预测帧调整并增加帧回归率,提升网络模型收敛速度。
    结果 实验结果表明,在自建的复杂场景下船舶数据集进行检测实验,与YOLOv5s算法相比,所提方法的mAP@0.5提升6.3%,参数量减少9.74%,计算量减少11.4%。
    结论 该检测方法有效实现了轻量化、高精度的船舶检测。

     

    Abstract:
    Objective A lightweight and efficient ship detection method based on the YOLO-FNC model is proposed for complex environments such as ports with dense traffic.
    Method First, a FasterNeXt neural network module is designed on the basis of the FasterNet method and replaces the C3 module in the YOLO model to ensure faster operation without affecting accuracy. Second, a normalization-based attention module (NAM) is integrated into the network structure and the sparse weight penalty is used to suppress the feature weights and ensure more efficient weight calculation. Finally, a new bounding box regression loss is proposed to speed up the prediction frame adjustment and increase the regression rate, thereby improving the convergence rate of the network mode.
    Results The experimental results show that when performing detection experiments on ship datasets in a self-built complex environment, the proposed method improves the mAP@0.5 by 6.3%, reduces the parameter count by 9.74% and reduces the computational complexity by 11.4%.
    Conclusion The proposed method effectively achieves lightweight and high-precision ship detection compared with the YOLOv5s algorithm.

     

/

返回文章
返回