樊昱玮, 郭腾博, 李哲, 洪良友, 刘超, 蒋东翔. 基于长短时记忆网络的结构动态载荷预测方法[J]. 中国舰船研究. DOI: 10.19693/j.issn.1673-3185.03463
引用本文: 樊昱玮, 郭腾博, 李哲, 洪良友, 刘超, 蒋东翔. 基于长短时记忆网络的结构动态载荷预测方法[J]. 中国舰船研究. DOI: 10.19693/j.issn.1673-3185.03463
Structural Dynamic Load Prediction Method Based on Long Short-term Memory Network[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.03463
Citation: Structural Dynamic Load Prediction Method Based on Long Short-term Memory Network[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.03463

基于长短时记忆网络的结构动态载荷预测方法

Structural Dynamic Load Prediction Method Based on Long Short-term Memory Network

  • 摘要: 【目的】针对传统代理模型无法处理具有时间依赖性的动态过程和异构数据的问题,本文提出了一种基于长短时记忆网络(LSTM)的动态载荷代理模型方法。【方法】该代理模型包含载荷特征编码和载荷响应解码两个模块,首先通过载荷特征编码模块的LSTM对动态外载荷时间序列进行特征提取,再将外载荷时序特征和结构参数特征进行融合,由载荷解码模块的LSTM进行进一步的特征提取并生成最终输出,从而综合考虑动态外载荷时间序列和结构参数一维特征的异构数据输入,预测结构内力响应时间历程。该模型在有限元仿真数据集上进行了精度评估,并与其他代理模型方法进行了对比。该模型还被用于进行结构参数与内力响应之间的相关性分析,以作为代理模型快速计算大量算例的应用案例。【结果】结果表明,该动态载荷代理模型的平均精度可以达到98%,高于其他对比方法,且计算速度相较于有限元方法更快。【结论】该方法解决了时序-非时序异构数据的代理模型问题,拥有高精度、高效率的优点,在快速迭代计算场景下能够发挥较大作用。

     

    Abstract: Objectives To address the limitations of traditional surrogate models in handling time-dependent dynamic processes and heterogeneous data, this paper proposes a dynamic load surrogate model method based on long short-term memory (LSTM) networks. Methods The surrogate model comprises two modules: load feature encoder and load response decoder. Firstly, the LSTM in the load feature encoder performs feature extraction on the time series of dynamic external loads. Then, the extracted load features are combined with the structural parameter features. The LSTM in the load decoder conducts further feature extraction and finally generate output, thus considering the heterogeneous data input of dynamic external load time series and one-dimensional structural parameter features comprehensively to predict the time history of internal force responses. The model’s accuracy is evaluated using a finite element simulation dataset and compared with other surrogate model methods. The model is also employed for the correlation analysis between structural parameters and internal force responses, serving as an example for the application of surrogate models in rapid calculation of a large number of cases. Results The results show that the average accuracy of the dynamic load surrogate model can reach 98%, which is higher than other methods, and the calculation speed is faster than that of the finite element method. Conclusions The proposed method addresses the issue of heterogeneous data involving both time-series and non-time-series features, offering advantages of high accuracy and efficiency, therefore effective for fast iterative computation tasks.

     

/

返回文章
返回