基于动态规划制导的无人艇自主回收控制方法

Autonomous recovery control method for USV based on dynamic programming guidance

  • 摘要:
    目的 针对欠驱动无人艇(USV)自主回收的需求,提出一种基于动态规划制导的跟踪控制方法。
    方法 在运动学层面,将平行接近制导(CB)与动态窗口算法(DWA)相结合,引导USV实现目标跟踪与动态避障;在动力学层面,针对模型参数及回收环境的不确定性,采用径向基函数神经网络(RBFNN)设计动力学滑模控制器,实现对制导输出的跟踪控制。随后,采用Lyapunov理论对系统的稳定性进行分析。
    结果 仿真结果表明,所提方法使USV具备了稳定跟踪性能,可有效规避回收过程中的动态障碍,并能自适应估计模型中的不确定因素和未知的环境干扰。
    结论 所提方法展现出较强的鲁棒性与灵活性,可为USV在动态环境下的回收进行制导与目标跟踪提供参考。

     

    Abstract:
    Objective This paper presents a tracking control method based on dynamic programming guidance to address the challenges presented by the autonomous recovery of underactuated unmanned surface vehicles (USVs).
    Methods At the kinematic level, constant bearing approach (CB) guidance is combined with a dynamic window algorithm (DWA) to guide the USV in achieving target tracking and dynamic obstacle avoidance. At the dynamic level, considering the uncertainties in the model parameters and recovery environment, a radial basis function neural network (RBFNN) is employed to design a dynamic sliding mode controller for the tracking control of the guidance output. Finally, the stability of the system is analyzed using Lyapunov theory.
    Results The simulation results demonstrate that the proposed method enables the USV to exhibit stable tracking performance, effectively avoid dynamic obstacles during the recovery process and adapt to uncertain factors in the estimation model and unknown environmental disturbances.
    Conclusion The proposed method exhibits strong robustness and flexibility, providing valuable references for the guidance and target tracking of USVs during recovery in dynamic environments.

     

/

返回文章
返回