刘江, 刘彦森, 黎胜. 基于Kriging代理模型的水下目标模型几何参数识别方法[J]. 中国舰船研究. DOI: 10.19693/j.issn.1673-3185.03295
引用本文: 刘江, 刘彦森, 黎胜. 基于Kriging代理模型的水下目标模型几何参数识别方法[J]. 中国舰船研究. DOI: 10.19693/j.issn.1673-3185.03295
LIU Jiang, LIU Yansen, LI Sheng. Geometry parameters recognition method for underwater target model based on Kriging surrogate model[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.03295
Citation: LIU Jiang, LIU Yansen, LI Sheng. Geometry parameters recognition method for underwater target model based on Kriging surrogate model[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.03295

基于Kriging代理模型的水下目标模型几何参数识别方法

Geometry parameters recognition method for underwater target model based on Kriging surrogate model

  • 摘要:
    目的 水下目标参数识别可为目标分类识别提供依据,为此,提出一种基于Kriging代理模型的水下目标参数识别方法。
    方法 首先,对敷设声学覆盖层的水下目标模型在螺旋桨和主辅机激励情况下的结构表面低频振动声辐射与声辐射灵敏度进行分析;然后,基于分析结果建立低频声辐射功率代理模型,并基于该代理模型构造由低频声辐射响应特征和目标参数组成的样本空间;最后,基于所构建的样本空间,建立目标参数识别代理模型并选取测试点进行模型验证。
    结果 结果显示,测试样本的实际目标参数值与所构建代理模型的目标参数预测值吻合良好;利用有限元法和边界元方法可以实现考虑阻尼材料频变特性的黏弹性阻尼结构的低频声辐射分析,并能解决商业软件无法大批量处理振动结果文件的问题;影响水下目标模型低频振动声辐射的主要目标参数为目标长度、最大半径、基层壳厚度和声学覆盖层厚度。
    结论 基于Kriging代理模型的水下目标参数识别方法可以通过声辐射线谱特征准确预测水下目标模型的主要目标参数值。

     

    Abstract:
    Objectives Underwater target parameter recognition can provide the basis for target classification and recognition. To this end, an underwater target parameter recognition method based on the Kriging surrogate model is proposed.
    Methods First, the low-frequency acoustic radiation of the structure surface and the acoustic sensitivity of an underwater target model covered with an acoustic layer are analyzed under propeller and main and auxiliary engine excitation. A low-frequency acoustic radiation power surrogate model is then established using the above analysis results, and a sample space consisting of acoustic radiation response features and target parameters is constructed on the basis of the surrogate model. Finally, a target parameter recognition surrogate model is established on the basis of the sample space, and test points are selected for model validation.
    Results The results show that the actual target parameter values of the test samples match well with the predicted target parameter values of the constructed surrogate model. The finite element method (FEM) and boundary element method (BEM) can realize the low-frequency acoustic radiation analysis of viscoelastic damping structures by considering the frequency-dependence characteristics of the damping material, and are able to solve the problem that commercial software may not process vibration result files in large quantities. The main target parameters affecting the low-frequency vibro-acoustic radiation of the underwater target model are the model length, maximum radius of the target, model thickness and acoustic layer thickness.
    Conclusions The underwater target parameter recognition method based on a surrogate model proposed herein is able to predict the main target parameter values of the underwater target model by analyzing its acoustic radiation line spectral features.

     

/

返回文章
返回