陈立家, 周为, 吴小红, 等. 面向云航海模拟器网络的QoS保障算法研究[J]. 中国舰船研究, 2024, 19(增刊 2): 1–12. DOI: 10.19693/j.issn.1673-3185.03282
引用本文: 陈立家, 周为, 吴小红, 等. 面向云航海模拟器网络的QoS保障算法研究[J]. 中国舰船研究, 2024, 19(增刊 2): 1–12. DOI: 10.19693/j.issn.1673-3185.03282
CHEN L J, ZHOU W, WU X H, et al. Research on QoS guarantee algorithm for cloud navigation simulator network[J]. Chinese Journal of Ship Research, 2024, 19(Supp 2): 1–12 (in Chinese). DOI: 10.19693/j.issn.1673-3185.03282
Citation: CHEN L J, ZHOU W, WU X H, et al. Research on QoS guarantee algorithm for cloud navigation simulator network[J]. Chinese Journal of Ship Research, 2024, 19(Supp 2): 1–12 (in Chinese). DOI: 10.19693/j.issn.1673-3185.03282

面向云航海模拟器网络的QoS保障算法研究

Research on QoS guarantee algorithm for cloud navigation simulator network

  • 摘要:
    目的 提出一种基于云技术的航海模拟器构架,并设计一种网络服务质量(quality of service, QoS)保障算法(cloud navigation simulator-QoS guaranteed algorithm, CNS-QoSGA)。
    方法 利用虚拟化技术将云航海模拟器硬件设备抽象集成为逻辑资源的方式,应用Kubernetes技术对平台应用服务进行集群管理,构建云航海模拟器平台构架。结合软件定义网络(software defined network, SDN)架构为云航海模拟器网络的广域网提供一种组网方案,在广域网传输过程中根据数据异构的特性确定算法的整体框架,在Mininet仿真平台上对算法的可行性进行仿真试验,设置流量辨识、视景数据调度和多数据流QoS保障仿真场景。
    结果 仿真试验结果表明,CNS-QoSGA在流量辨识上其精度能达到70%以上;相比于传统Dijkstra算法,该路径下带宽提高了56.2%,时延降低了21.4%;当多数据流共存于云航海模拟器网络时,相较于等价路由算法,CNS-QoSGA对网络中带宽和时延的满足率都提高了10%。
    结论 所提出的算法为有QoS需求的视景数据计算出合适的路由路径,保障了网络的QoS。

     

    Abstract:
    Objectives This study proposes cloud-based navigation simulator architecture and designs a web quality of service (QoS) assurance algorithm.
    Methods Virtualization technology is used to abstract the hardware devices of the cloud navigation simulator into logical resources, then Kubernetes technology is applied to cluster the platform application services and manage and build the cloud navigation simulator platform architecture. Combined with software-defined network architecture to provide a networking scheme for the WAN of the cloud navigation simulator network, the overall framework of the algorithm is determined according to the characteristics of data heterogeneity in the WAN transmission process, while the feasibility of the algorithm is simulated and tested on the Mininet simulation platform, and traffic identification, data schedule viewing and multi-stream QoS assurance simulation scenarios are established.
    Results The simulation experiments show that CNS-QoSGA achieves more than 70% accuracy in traffic identification, 56.2% improvement in bandwidth and 21.4% reduction in delay compared to the traditional Dijkstra algorithm, and when multiple data streams coexist in the cloud navigation simulator network, CNS-QoSGA improves the satisfaction rate of both bandwidth and delay in the network compared to the equivalent routing algorithm.
    Conclusions The proposed algorithm calculates appropriate routing paths for QoS-demanding view data and guarantees the QoS of the network.

     

/

返回文章
返回