超临界二氧化碳布雷顿循环冷源扰动控制研究

Study on supercritical carbon dioxide Brayton cycle cooling source disturbance control

  • 摘要:
      目的  旨在应对超临界二氧化碳(S-CO2)布雷顿循环发电系统外界条件扰动对运行参数可能造成的影响,保证系统高效、安全稳定地运行。
      方法  基于Matlab/Simulink平台搭建简单S-CO2布雷顿循环发电系统动态数值仿真模型,并进行系统瞬态运行特性分析;模拟冷却器参数发生变化时热力循环系统运行参数的变化规律,分析冷源温度波动对系统各部件进出口参数和系统循环效率的影响以及调节手段。
      结果  结果显示,由搭建的系统瞬态仿真模型所得结果与实验结果间的最大误差为3.658%;冷却水温度升高2 K会导致压缩机入口温度升高1.4 K,系统需300 s恢复稳定;增加PID控制系统后,压缩机入口温度变化幅值降低50%,系统稳定时间减少62%。
      结论  建立的模型能够准确反映系统运行情况,由冷却水温度升高和流量增加对系统影响的对立性为基础而搭建的PID控制系统能够保证系统内CO2工质始终处于临界点以上,可以保障系统安全稳定运行。

     

    Abstract:
      Objectives  This paper aims to cope with the possible impact of external condition disturbances on the operating parameters of a supercritical carbon dioxide (S-CO2) Brayton cycle power generation system and ensure its efficient, safe and stable operation.
      Methods  A dynamic numerical simulation model of a simple S-CO2 Brayton cycle power generation system is built using the Matlab/Simulink platform, and the transient operation characteristics of the system are analyzed. The change laws of the operating parameters of the thermodynamic cycle system under changing cooler parameters are then simulated, and the influence of the temperature fluctuation of the cooling source on the inlet and outlet parameters of the system components, system cycle efficiency and adjustment methods are analyzed.
      Results  The results show that the maximum error between the established system transient simulation model results and the experimental results is 3.658%; a 2 K increase in the cooling water temperature will lead to a 1.4 K increase in the compressor inlet temperature, and the system will need 300 s to restore stability; after adding a PID control system, the compressor inlet temperature change amplitude is reduced by 50% and the system stabilization time is reduced by 62%.
      Conclusions  The established model can accurately reflect the operation of the system. Based on the opposition of the influence of cooling water temperature increase and flow increase on the system, the proposed PID control system can ensure that the carbon dioxide working fluid in the system is always above the critical point, thereby ensuring the safe and stable operation of the system.

     

/

返回文章
返回