面向过驱动UUV推进器容错控制的非线性观测自适应推力分配

Nonlinear observer-based adaptive thruster allocation for thruster fault tolerant control of over-actuated UUV

  • 摘要:
      目的  为了研究水下无人航行器(UUV)动力定位过程中受到外界时变干扰以及推进器故障时的控制方法,提出可实现推进器容错控制的非线性观测自适应推力分配策略。
      方法  首先基于幂次滑模方法进行UUV动力定位控制器设计,并采用非线性观测器实现对外界环境干扰的有效估计;然后结合外界扰动估计值以及故障模式下的状态偏差序列构建二次规划问题,对其求解获得各推进器的效率因子,以修正推力分配矩阵,从而实现推进器容错下的自适应推力分配。
      结果  仿真结果显示,UUV控制系统能够有效估计外界环境干扰以及各推进器效率因子,即使部分推进器出现故障,UUV仍能降格完成动力定位任务。
      结论  研究表明所提出的自适应推力分配策略及滑模控制算法合理,适用于存在外界环境干扰以及推进器故障的复杂工况。

     

    Abstract:
      Objective  To deal with the external time-variance disturbances and possible failure of actuators during the dynamic positioning operation of an unmanned underwater vehicle (UUV), this paper proposes a nonlinear observer-based adaptive allocation strategy to achieve thruster fault tolerance.
      Method  The control scheme is first established by means of the power sliding mode control technique to obtain the dynamic position. Meanwhile, a nonlinear disturbance observer is designed to estimate external disturbances. Then, based on the estimated external disturbance and state deviation sequence under the failure mode, a quadratic programming problem is constructed and solved to obtain the efficiency factor of each thruster, and the thrust distribution matrix is modified to achieve adaptive control allocation under thruster fault tolerance.
      Results  The simulation results show that the UUV control system can effectively estimate external environmental disturbances and the efficiency factor of each thruster. Even if the actuator fails, the UUV can still accomplish its dynamic positioning mission.
      Conclusion  The results of this study show that the proposed adaptive thruster allocation and sliding mode control algorithm is reasonable and can be effectively applied to UUVs under external environmental disturbances and actuator failure.

     

/

返回文章
返回