Simulation and experimental verification of main ballast tank blowing based on short circuit blowing model
-
摘要:目的 为了研究潜艇主压载水舱的吹除排水性能,开展基于短路吹除模型的吹除仿真与实验。方法 首先,修正短路吹除数理模型,以模拟气瓶放气过程和水舱排水过程;然后,开展压缩空气吹除主压载水舱等比例模型实验,分析气源体积、气源压力和通海孔面积对吹除效果的影响;最后,通过与实验结果的对比,验证修正的数理模型对水舱吹除过程的预报准确性。结果 研究发现:修正的模型在低压力、小通径工况下的预报准确性较高,当气源压力小于15 MPa时,水舱峰压预报相对误差在15%以内;不同通海孔通径下主压载水舱内气体峰值压力的出现时间有所不同,小通径工况下的舱内气体峰值压力出现在压缩空气刚进入水舱时,而大通径工况下则为积压解除之前;当舱内积压解除之后,舱内气体压力大幅下降,可将其作为解除吹除的判据。结论 研究成果可为实际工程应用中的主压载水舱吹除操作提供参考。Abstract:Objective In order to study the blowing and drainage performance of a submarine main ballast tank system, the simulation and experiment of main ballast blowing based on the short circuit blowing model are carried out.Methods First, the short circuit blowing model is modified to simulate the process of air release and water drainage. Next, an equal scale model test of a compressed air blowing ballast tank is carried out, and the effects of air source volume, air source pressure and sea opening area on the blowing effect are analyzed. Finally, the reliability of the short circuit blowing model is experimentally verified.Results The modified model has high accuracy, especially in the prediction of low air source pressure and small sea opening diameter conditions. When the air source pressure is less than 15 MPa, the relative error of peak pressure prediction is less than 15%. The occurrence time of air peak pressure is different under different sea opening diameters, under small diameter conditions, the air pressure reaches its maximum when the compressed air first enters the tank, while under large diameter conditions, the peak pressure appears before the accumulated air pressure is released. When the accumulated air pressure is released, the tank air pressure drops sharply, which can be used as a criterion to stop blowing.Conclusion The results of this study can provide references for the blowing operation of the main ballast tank in practical engineering applications.
-
-
表 1 工况参数
Table 1 Working condition parameters
工况 气源体积 通海孔通径 气源压力PF0/MPa 1 VF=V0 DN 65 3.10 2 DN 65 5.05 3 VF=3V0 DN 150 2.13 4 DN 150 3.15 5 VF=2V0 DN 65 2.16 6 DN 150 2.16 表 2 仿真与实验结果对比(VF=V0)
Table 2 Comparison of simulation and experimental results (VF=V0)
VF=V0 实验结果 仿真结果 水舱峰
压相对
误差δ/%通海孔
通径气源压力
PF0/MPa吹除
时间t/sPExpmax/MPa 吹除
时间t/sPSimmax/MPa DN 65 3.10 17~20 0.310 8 19.16 0.325 7 4.79 5.05 14~17 0.406 4 15.30 0.435 3 7.11 DN 80 1.15 23~26 0.160 4 29.42 0.153 9 4.05 2.16 15~18 0.207 4 18.04 0.206 0 0.68 15.36 7~10 0.571 6 7.19 0.645 8 12.98 DN 100 2.12 14~17 0.166 9 15.43 0.169 8 1.74 20.90 5~8 0.539 2 5.01 0.616 0 14.24 DN 125 2.21 13~16 0.125 4 12.92 0.145 3 15.87 24.52 6~9 0.394 4 3.64 0.526 2 33.42 表 3 仿真与实验结果对比(VF=2V0)
Table 3 Comparison of simulation and experimental results (VF=2V0)
VF=2V0 实验结果 仿真结果 水舱峰
压相对
误差δ/%通海孔
通径气源压力
PF0/MPa吹除
时间t/sPExpmax/MPa 吹除
时间t/sPSimmax/MPa DN 65 1.17 24~27 0.200 0 30.95 0.192 2 3.90 2.16 18~21 0.266 6 21.88 0.265 2 0.53 3.12 16~19 0.323 6 18.34 0.326 9 1.02 4.06 14~17 0.376 5 16.30 0.381 7 1.38 5.04 14~17 0.424 2 14.87 0.434 7 2.48 6.19 13~16 0.477 4 13.66 0.492 8 3.23 8.15 12~15 0.557 4 12.23 0.584 4 4.84 DN 150 2.16 9~12 0.130 3 11.36 0.135 9 4.30 4.10 7~10 0.154 2 7.04 0.165 4 7.26 5.17 7~10 0.170 1 6.10 0.182 0 7.00 8.17 7~10 0.196 1 4.75 0.226 1 15.30 12.20 7~10 0.240 2 3.91 0.279 7 16.44 16.13 6~9 0.286 0 3.45 0.327 9 14.65 18.03 6~9 0.295 4 3.29 0.350 0 18.48 20.16 6~9 0.291 8 3.14 0.373 9 28.14 23.17 6~9 0.317 4 2.96 0.406 3 28.01 25.09 5~8 0.329 0 2.86 0.426 3 29.57 表 4 仿真与实验结果对比(VF=3V0)
Table 4 Comparison of simulation and experimental results (VF=3V0)
VF=3V0 实验结果 仿真结果 水舱峰
压相对
误差δ/%通海孔
通径气源压力
PF0/MPa吹除
时间t/sPExpmax/MPa 吹除
时间t/sPSimmax/MPa DN 150 1.13 14~17 0.122 0 20.42 0.125 4 2.79 2.13 8~11 0.130 0 11.25 0.136 8 5.23 3.15 8~11 0.142 5 8.34 0.152 1 6.74 4.14 6~9 0.155 3 6.94 0.167 6 7.92 5.14 6~9 0.169 4 6.08 0.183 2 8.15 6.17 6~9 0.182 6 5.48 0.198 8 8.87 7.14 6~9 0.195 0 5.07 0.213 2 9.33 8.13 6~9 0.207 3 4.74 0.227 4 9.70 9.15 6~9 0.218 8 4.47 0.241 5 10.37 10.32 6~9 0.230 9 4.22 0.257 3 11.43 12.23 4~7 0.248 5 3.89 0.282 1 13.52 14.11 4~7 0.263 4 3.65 0.305 4 15.95 15.07 4~7 0.270 2 3.55 0.317 0 17.32 16.14 4~7 0.273 4 3.44 0.329 6 20.56 18.23 3~6 0.300 7 3.26 0.353 5 17.56 20.28 3~6 0.288 9 3.12 0.376 1 30.18 23.15 3~6 0.308 0 2.95 0.406 7 32.05 25.02 3~6 0.306 1 2.86 0.426 0 39.17 -
[1] 李其修, 刘辉, 吴向君. 基于CFD的潜艇高压气吹除主压载水舱系统模拟[J]. 舰船科学技术, 2012, 34(9): 56–60. doi: 10.3404/j.issn.1672-7649.2012.09.011 LI Q X, LIU H, WU X J. The simulation research of high pressure air blowing the main ballast tank based on CFD[J]. Ship Science and Technology, 2012, 34(9): 56–60 (in Chinese). doi: 10.3404/j.issn.1672-7649.2012.09.011
[2] 刘辉, 浦金云, 金涛. 潜艇高压气吹除主压载水舱系统模型研究[J]. 舰船科学技术, 2010, 32(9): 26–30. doi: 10.3404/j.issn.1672-7649.2010.09.006 LIU H, PU J Y, JIN T. Research on system model of high pressure air blowing submarine's main ballast tanks[J]. Ship Science and Technology, 2010, 32(9): 26–30 (in Chinese). doi: 10.3404/j.issn.1672-7649.2010.09.006
[3] WILGENHOF J D, GIMÉNEZ J J C, PELÁEZ J G. Performance of the main ballast tank blowing system[C]//Undersea Defence Technology Conference 2011. London, Britain: UDT Europe, 2011.
[4] FONT R, GARCÍA J, OVALLE D. Modelling and simulating ballast tank blowing and venting operations in manned submarines[J]. IFAC Proceedings Volumes, 2010, 43(20): 67–72. doi: 10.3182/20100915-3-DE-3008.00029
[5] FONT R, GARCIA J, MURILLO J A, et al. Modelling and control of blowing-venting operations in manned submarines[J]. Journal of Control Engineering & Technology, 2011.
[6] RIAZ Z, WAQAS M A, AHMED W, et al. On mathematical modelling of main ballast tank system of a sub-surface platform[C]//Warship 2017: Naval Submarines & UUVs. Bath, UK: The Royal Institution of Naval Architects, 2017.
[7] 杨晟, 余建祖, 程栋, 等. 潜艇应急燃气吹除过程的理论分析及实验验证[J]. 北京航空航天大学学报, 2009, 35(4): 411–416. YANG S, YU J Z, CHENG D, et al. Theoretical analysis and experimental validation on gas jet blowing-off process of submarine emergency[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(4): 411–416 (in Chinese).
[8] 杨晟, 余建祖, 程栋, 等. 潜艇应急燃气吹除过程的数值仿真及实验验证[J]. 北京航空航天大学学报, 2010, 36(2): 227–230. YANG S, YU J Z, CHENG D, et al. Numerical simulation and experimental validation on gas jet blowing-off process of submarine emergency[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(2): 227–230 (in Chinese).
[9] 刘辉, 浦金云, 李其修, 等. 潜艇高压气吹除主压载水舱系统实验研究[J]. 哈尔滨工程大学学报, 2013, 34(1): 34–39. LIU H, PU J Y, LI Q X, et al. The experiment research of submarine high-pressure air blowing off main ballast tanks[J]. Journal of Harbin Engineering University, 2013, 34(1): 34–39 (in Chinese).
[10] 刘辉, 李其修, 吴向君, 等. 潜艇高压气吹除系统流量模型的构建与实验分析[J]. 舰船科学技术, 2015, 37(10): 52–55. doi: 10.3404/j.issn.1672-7649.2015.10.011 LIU H, LI Q X, WU X J, et al. The establishing of pipe flow model and experimental analysis on submarine high pressure air blowing system[J]. Ship Science and Technology, 2015, 37(10): 52–55 (in Chinese). doi: 10.3404/j.issn.1672-7649.2015.10.011
[11] 王晓峰, 王先洲, 张志国, 等. 考虑重力影响的高压气体吹除改进数理模型和实验对比分析[J]. 中国舰船研究, 2014, 9(6): 80–86. doi: 10.3969/j.issn.1673-3185.2014.06.014 WANG X F, WANG X Z, ZHANG Z G, et al. Experiment and mathematics model of high pressure air blowing[J]. Chinese Journal of Ship Research, 2014, 9(6): 80–86 (in Chinese). doi: 10.3969/j.issn.1673-3185.2014.06.014
[12] 金涛, 刘辉, 王京齐, 等. 舱室进水情况下潜艇的挽回操纵[J]. 船舶力学, 2010, 14(1/2): 34–43. JIN T, LIU H, WANG J Q, et al. Emergency recovery of submarine with flooded compartment[J]. Journal of Ship Mechanics, 2010, 14(1/2): 34–43 (in Chinese).
[13] 张建华, 胡坤, 刘常波. 潜艇高压气吹除主压载水舱过程的数值模拟[J]. 船舶力学, 2015, 19(4): 363–368. doi: 10.3969/j.issn.1007-7294.2015.04.003 ZHANG J H, HU K, LIU C B. Numerical simulation on compressed gas blowing ballast tank of submarine[J]. Journal of Ship Mechanics, 2015, 19(4): 363–368 (in Chinese). doi: 10.3969/j.issn.1007-7294.2015.04.003
[14] BYSTROM L. Submarine recovery in case of flooding[J]. Naval Forces, 2004, 25(3): 80–85.
[15] 马运义, 许建. 现代潜艇设计原理与技术[M]. 哈尔滨: 哈尔滨工程大学出版社, 2012: 351-352. MA Y Y, XU J. Design principle and technology of modern submarine[M]. Harbin: Harbin Engineering University Press, 2012: 351-352 (in Chinese).