徐鹏, 杨海燕, 程宁, 等. 基于优化BP神经网络的船舶动力系统故障诊断[J]. 中国舰船研究, 2021, 16(增刊 1): 1–8. DOI: 10.19693/j.issn.1673-3185.02453
引用本文: 徐鹏, 杨海燕, 程宁, 等. 基于优化BP神经网络的船舶动力系统故障诊断[J]. 中国舰船研究, 2021, 16(增刊 1): 1–8. DOI: 10.19693/j.issn.1673-3185.02453
XU P, YANG H Y, CHENG N, et al. Fault diagnosis of ship power system based on optimized BP neural network[J]. Chinese Journal of Ship Research, 2021, 16(Supp 1): 1–8. DOI: 10.19693/j.issn.1673-3185.02453
Citation: XU P, YANG H Y, CHENG N, et al. Fault diagnosis of ship power system based on optimized BP neural network[J]. Chinese Journal of Ship Research, 2021, 16(Supp 1): 1–8. DOI: 10.19693/j.issn.1673-3185.02453

基于优化BP神经网络的船舶动力系统故障诊断

Fault diagnosis of ship power system based on optimized BP neural network

  • 摘要:
      目的  为实现船舶动力系统的故障诊断,基于优化的BP神经网络提出一种故障诊断方法。
      方法  首先,采用附加动量−自适应学习速率调整算法来克服BP神经网络的缺陷;然后,运用“小网络集群”的思路分别构建网络以进行故障识别和故障溯源;接着,采用动力系统仿真平台生成的450组故障数据进行神经网络训练;最后,通过给水泵转速异常高这一故障案例展示故障诊断结果。
      结果  通过对故障数据的学习,发现故障原因诊断准确率可高达99%以上。
      结论  研究表明,基于优化BP神经网络的故障诊断方法能够精准实现船舶动力系统的故障诊断。

     

    Abstract:
      Objectives  In order to realize the fault diagnosis of a ship power system, this paper proposes a fault diagnosis method based on an optimized back-propagation (BP) neural network.
      Methods  First, a momentum/adaptive learning rate adjustment algorithm is used to overcome the defects of the BP neural network. The idea of a "small network cluster" is then adopted to construct a separate network for fault identification and diagnosis. Next, 450 groups of fault data generated from a ship power system simulation platform are used for neural network training. Finally, the fault diagnosis results are demonstrated via a fault case in which the speed of a feed water pump is abnormal.
      Results  Through training in fault data, the fault diagnosis accuracy level reaches more than 99%.
      Conclusions  The proposed fault diagnosis method based on an optimized BP neural network can accurately realize the fault diagnosis of ship power systems.

     

/

返回文章
返回