复杂扰动下水下机器人的轨迹精确跟踪控制

Accurate track control of unmanned underwater vehicle under complex disturbances

  • 摘要:
      目的  针对外界复杂干扰下水下机器人三维轨迹精确跟踪控制的问题,提出一种基于有限时间扰动观测器的非奇异终端滑模控制方法。
      方法  设计非奇异终端滑模轨迹跟踪控制器,保证跟踪误差在有限时间内精确收敛到零。在外界多维度时变干扰下,设计有限时间扰动观测器,提高系统的抗干扰能力。
      结果  利用Lyapunov函数证明所设计控制策略可以有限时间稳定。采用MATLAB进行仿真实验,在阶跃扰动下与反步滑模控制方法仿真对比,表明所提方法可实现轨迹的精确跟踪。
      结论  研究结果可为水下机器人的三维轨迹精确跟踪提供解决思路。

     

    Abstract:
      Objectives  This paper presents a non-singular terminal sliding mode track control method based on a finite-time disturbance observer to solve the problem of accurately tracking and controlling an the 3D trajectory of an unmanned underwater vehicle under complex external disturbances.
      Methods  A non-singular terminal sliding mode track controller is designed to ensure that the tracking error converges to zero accurately within a limited time. A finite-time disturbance observer is designed to improve the anti-jamming ability of the system under external multidimensional time-varying disturbances.
      Results  The Lyapunov function is used to prove that the designed control strategy can remain stable for a limited time. MATLAB is used for the simulation experiment, and a comparison with the backstepping sliding mode control method under step disturbance shows that the method presented in this paper achieves accurate trajectory tracking.
      Conclusions  The results of this paper can provide a solution for accurately tracking the 3D trajectories of unmanned underwater vehicles.

     

/

返回文章
返回