碟旋体高速小角度入水稳定性仿真分析

Simulation analysis on trajectory stability of high-speed water entry at a small angle for disc-spinning body

  • 摘要:
      目的  针对高速航行体小角度入水稳定性问题,提出碟形回转体(碟旋体)高速斜切入水的技术方案,研究航行体高速入水的弹道特性。
      方法  利用刚性Lagrange结构网格和Euler流场网格(L/E)耦合的方法,建立碟旋体和尖头回转体小角度入水的仿真模型。通过对比所用算法得到的位移与文献试验测得的结果,验证算法的准确性。对比分析两种航行体在以7°斜角高速(405 m/s)入水后的质心弹道轨迹及计算结果,并模拟碟旋体在不同角度入水时的初始弹道,分析其对碟旋体入水弹道稳定性的影响。
      结果  分析结果表明,在以7°斜角高速入水后,尖头回转体发生了跳弹现象,而碟旋体能保持较好的斜射姿态,未发生跳弹现象,这说明碟旋体在小角度入水时水下弹道稳定性很高;在不同入水角度下,碟旋体的弹道侧向偏斜较小,入水弹道均稳定。
      结论  研究结果可为水面舰船向水下目标精确、稳定和高速投放有效载荷提供新的思路。

     

    Abstract:
      Objectives  This study focuses on the problem of the stability of high-speed water entry and puts forward a new disc-shaped configuration.
      Methods  High-speed water entry at a small angle is simulated for a disc-spinning body and cusp revolution body using a 3D model based on a combination of Language structure mesh and Euler fluid mesh, and the collation method is carried out using the experimental results. A comparison of the two simulations at a 7º water entry angle and a speed of 405 m/s is then carried out to analyze stability. The stability of the disc-spinning body at different water entry angles is also studied using the simulation method.
      Results  The results show that the cusp revolution body ricocheted from the surface of the water, while the disc-spinning body maintained a straight trajectory and remained stable during water entry at high speeds and a small angle. The disc-spinning body can also achieve a stable water entry trajectory at different angles with a very small deflective gap.
      Conclusion  The results of this study can provide a new method for launching effective payloads to underwater targets with higher precision, stability and speed.

     

/

返回文章
返回