基于混合集群演化元博弈的海上对空反导杀伤链优选策略研究

Research on the optimal selection strategy of surface-to-air anti-missile kill chain based on mixed swarm evolutionary meta-game

  • 摘要:
    目的 针对海上对空反导杀伤链优选问题,以优化杀伤链设计、提升作战能力为目标,开展相关算法研究。
    方法 考虑到无人机、无人艇等参与者之间,以及毁伤概率、武器成本、剩余能力以及目标照射时间等因素的相互博弈关系,构建无人机集群博弈模型及无人艇集群博弈模型,并设计纳什均衡指标衡量方案优劣。通过引入基于混合集群的演化元博弈算法,采用实数编码方式,以博弈模型的纳什均衡指标之和的倒数作为适应度函数,结合遗传算法进行求解。
    结果 仿真实验表明,该算法能够有效获得8,16,32发来袭目标情况下的最优杀伤链方案。与其他算法对比,本文算法在毁伤概率、剩余能力等各项指标上均表现出显著优势。通过优化杀伤链中打击与感知节点分配,可提高整体对空反导效能。
    结论 所提方法能有效整合海上作战中的多节点资源,并动态调整感知与打击节点分配,实现杀伤链优选。未来研究可扩展场景并细化模型,考虑更多导弹类型、复杂攻击模式与不同防御系统的资源分配优先级,以进一步验证算法性能。

     

    Abstract:
    Objectives To optimize the kill chain design process and enhance combat capabilities, this study investigates a kill chain optimization algorithm based on a hybrid swarm evolutionary meta-game.
    Methods Focusing on Surface-to-Air defense, a non-cooperative game model is developed to address decision-making challenges within kill chain optimization. The game involves UAVs, USVs, and the interplay between damage probability, weapon cost, and remaining USV capability. For UAVs, the game considers target illumination time and remaining UAV capability. A Nash equilibrium-based algorithm is proposed to solve these game models. Given the exponential growth in feasible solutions as the number of targets, sensing nodes, and strike nodes increases, the study introduces an evolutionary meta-game algorithm using real-number encoding to solve the problem efficiently.
    Results Simulation results show that in the uniform attack mode, the optimal Nash equilibrium value decreases monotonically with iterations, effectively yielding optimal kill chain solutions for 8, 16, and 32 incoming targets. Compared to other algorithms, the proposed method outperforms in all metrics, validating its effectiveness.
    Conclusions The proposed hybrid swarm evolutionary meta-game algorithm effectively integrates multi-node resources in maritime operations and dynamically adjusts the allocation of sensing and strike nodes to achieve rapid closure of the kill chain and optimal strategies. Future research can expand the scenarios and refine the model to include more missile types, complex attack patterns, and resource allocation priorities for different defense systems, further validating the algorithm's performance.

     

/

返回文章
返回