仿生航行器鳍-艇几何参数对推进性能影响研究

Effects of Fin-Hull Geometric Parameters on Propulsion Performance in Bionic Vehicles

  • 摘要: 本研究旨在系统量化鳍-艇几何构型对仿生波动鳍(Media and/or Paired Fin propulsion,MPF)推进性能的影响机制,以解决现有研究对不同构生航行器几何参数缺乏统一分析的问题。为此,本研究建立了包含艇体与一对波动鳍的通用参数化几何模型,并创新性地引入鳍宽与艇宽之比( )作为核心无量纲几何参数;基于此模型,通过高保真CFD数值模拟,分析了不同 值下航行器的推进性能与流场结构。研究结果表明, 值对推进性能具有非线性显著影响:存在一个最优的 值范围可使推进效率最大化, 值过小会导致推力不足,过大则会因鳍-艇间强干扰诱发流动分离而增加阻力;此外, 值显著调控纵倾力矩的大小,对航行器姿态稳定性构成关键约束。本研究明确了 参数在效率与稳定性之间的设计权衡关系,所建立的参数化模型与揭示的影响规律,为仿生航行器的外形设计提供了定量理论依据,并为后续多参数耦合优化及自航性能研究奠定了坚实基础。

     

    Abstract: This study aims to systematically quantify the influence of fin-hull geometric configuration on the propulsion performance of bionic undulating fins (Media and/or Paired Fin propulsion, MPF), addressing the lack of a unified analysis of geometric parameters across different bionic underwater vehicles in existing research. To this end, a universal parametric geometric model incorporating the hull and a pair of undulating fins was established, which innovatively introduces the ratio of fin width to hull width ( ) as the core dimensionless geometric parameter. Based on this model, high-fidelity CFD numerical simulations were conducted to analyze the propulsion performance and flow field structure of the vehicle under different values. The results indicate that γ has a nonlinear and significant impact on propulsion performance: an optimal range of values exists to maximize propulsion efficiency. Excessively small values lead to insufficient thrust generation, while excessively large values increase drag due to strong fin-hull interactions that induce flow separation. Furthermore, significantly modulates the magnitude of the pitching moment, imposing a critical constraint on the attitude stability of the vehicle. This study clarifies the design trade-off between efficiency and stability governed by the parameter. The established parametric model and the revealed influencing mechanisms provide a quantitative theoretical basis for the shape design of bionic underwater vehicles and lay a solid foundation for subsequent research on multi-parameter coupling optimization and self-propulsion performance.

     

/

返回文章
返回