基于VMD-LSTM神经网络的船舶运动极短期预报研究

Research on extreme short-term prediction of real ship motion based on VMD- LSTM neural network

  • 摘要: 【目的】船舶在实海域的运动具有不确定性,这对工程作业产生了较大的影响。对船舶的运动状态进行预报,可以提前预知船舶的运动状态,从而进行更好的作业决策。【方法】本研究以海上实测船舶运动数据为输入,针对实海域船舶运动非线性、非平稳的特征,首先利用变分模态分解(VMD)方法分解数据特征,由此基于长短期记忆神经网络(LSTM)构建了船舶运动极短期预报神经网络模型,并利用仿真数据以及实船数据进行多输入多输出的极短期运动预报验证与应用。【结果】通过分析验证发现此模型最佳预报时长约为一个运动周期,对横摇、纵摇和垂荡运动预报精度总体可达75%-90%以上。通过进行模拟实时预报,得出此神经网络预报效果较好,预报实时性强,每步预报花费时间少于0.05s,【结论】相比于复杂的理论模型预报大大提升了预报效率,为船舶运动的实时极短期预报实际应用提供了技术支撑。

     

    Abstract: Objectives The motion of ships in real sea are random and uncertain, which cause great influence on offshore operations. Predicting the stochastic motion state of ship in advance can better support offshore operations. Methods This study uses the Variational Mode Decomposition (VMD) method to decomposes data features. Based on the Long Short-Term Memory (LSTM) network, an extreme short-term prediction neural network model for ship motion is built, taking ship motion data as input. Extreme short-term prediction of ship motion is achieved through multi-input and multi-output predictions using simulation data and real ship data. Results Through analysis, it is found that when the optimal prediction duration is approximately one motion period, this neural network’s prediction accuracy can reach 75%-90% or above. During simulated real-time prediction, this neural network demonstrates superior performance with strong real-time capability, with each prediction step taking less than 0.05s. Conclusions Compared with complex theoretical models, it significantly enhances computational efficiency and provides technical support for practical real-time ship motion prediction applications.

     

/

返回文章
返回