漂浮式潮流能水轮机系统在波流作用下的动力响应分析

Dynamic Response Analysis of a Floating Tidal Current Turbine System under Waves And Currents

  • 摘要: 【目的】漂浮式潮流能水轮机系统在波浪中的运动响应十分复杂,需要考虑流体动力学、系泊系统、浮式载体与水轮机相互作用等多重因素。基于商业CFD软件STAR-CCM+,构建漂浮式潮流能⽔轮机系统的全耦合实尺度数值模型,研究其在随机海况下的运动响应。【方法】基于重叠网格技术与动态流体相互作用(DFBI)模型模拟系统运动,结合流体体积(VOF)方法捕捉自由面,采用集中质量法模拟系泊张力变化,建立半潜式平台-潮流能水轮机-系泊系统耦合数值模型。【结果】研究表明,搭载单个潮流能水轮机可显著减小系统的纵摇运动,降低纵荡运动在低频处的响应峰值,同时降低纵摇和垂荡运动在固有频率处的响应峰值。系统运动使潮流能水轮机水动力系数的波动幅值增加。潮流能水轮机推力系数谱与功率系数谱的峰值主要由波频造成。在三水轮机系统中,下游水轮机的平均扭矩较上游水轮机略微增加。【结论】研究可为海洋能源开发利用提供理论指导。

     

    Abstract: Objectives The motion response of floating tidal current turbine systems in waves and currents involves complex interactions including hydrodynamics, mooring dynamics, and platform-turbine coupling effects. A fully coupled, full-scale numerical model is developed using STAR-CCM+ to investigate the system behaviour under random wave conditions. Methods The overset grid technique, in combination with dynamic fluid-body interaction (DFBI) modelling, is utilised to simulate system motions. Free surface is captured through the volume of fluid (VOF) method, while mooring line dynamics are represented using the lumped-mass approach. An integrated numerical model is established to incorporate the semi-submersible platform, turbines, and mooring system. Results The results demonstrate that integration of a single tidal current turbine significantly reduce pitch motion while suppressing low-frequency surge response and natural-frequency response of pitch and heave motions. The platform motion is found to amplify the fluctuation amplitude of the tidal turbine's hydrodynamic coefficients. Spectral analysis reveal wave-frequency dominance in thrust and power coefficient peaks. In multi-turbine configurations, slightly higher thrust values are observed in downstream turbines compared to upstream positions. Conclusions The findings of the present study provide fundamental insights for the optimisation of floating tidal energy converter designs.

     

/

返回文章
返回