基于改进变色龙算法的无线传感器网络静态节点优化部署

Static Node Deployment Optimization in Wireless Sensor Networks Based on Fractional-order Chameleon Swarm Algorithm

  • 摘要: 【目的】无线传感器网络(Wireless Sensor Networks, WSN)在海域监测中发挥着重要作用,可作为环境监测、目标定位、海洋资源开发、灾害预警等应用的重要手段。然而,当前无线传感器网络在目标海域监测过程中面临部署方式随意、有效覆盖率低以及覆盖冗余度高等问题,这严重制约了网络性能的提升。因此,本文提出了一种基于分数阶改进变色龙算法(Fractional-order Chameleon Swarm Algorithm, FCSA),用于无线传感器网络静态节点优化部署,旨在提升静态节点的覆盖效率与部署质量,同时为海域监测等工程应用提供坚实的理论支撑和技术保障。【方法】首先,为了解决传统算法种群初始化随机性强、分布不均的问题,采用改进Circle混沌映射对种群进行初始化,以增强种群的多样性和全局分布性,从而为后续优化奠定更高质量的初始条件。随后,在速度更新阶段,引入分数阶速度更新策略,充分利用个体历史搜索信息,提升算法在全局搜索和局部开发之间的动态平衡能力,从而进一步提高搜索效率和优化质量。此外,为增强算法跳出局部最优的能力并提升全局探索性能,结合Levy飞行机制引导个体位置更新,使算法具备更强的跳跃特性和适应性。通过以上改进,FCSA能够有效优化覆盖率和覆盖冗余度等关键性能指标,显著提升静态节点的部署效率和分布均匀性,为无线传感器网络在复杂环境下的高效应用提供了技术支撑。【结果】仿真实验结果表明,FCSA算法在静态节点优化部署任务中展现了显著优势。与CSA、CSA-Circle、CSA-Levy、RSO等9种经典优化算法相比,FCSA在实现高覆盖率的同时显著降低了覆盖冗余度。实验结果表明,FCSA的覆盖率高达0.8018,而覆盖冗余度仅为0.0078。此外,在单次优化部署任务中,FCSA表现出最快的收敛性,仅需638步即可收敛到适应度值0.191409,明显优于其他算法。在运行30次后计算标准差结果统计中,FCSA在早期迭代阶段表现出极快的收敛速度,在1000次迭代后达到最优适应度值0.198222,是10种算法中唯一一个标准差适应度值低于0.2的算法。这表明FCSA在全局搜索能力和收敛精度上具有显著优势,能够在较少迭代次数内找到最优解,且节点分布更加均匀,避免了传统算法中节点分布不均的问题,同时具备较强的稳定性和鲁棒性。【结论】在WSN静态节点优化部署问题中,通过多策略协同优化,FCSA能够有效实现节点的高效部署,显著提升监测质量,同时显现出在复杂环境下的优异鲁棒性和适应性。此外,FCSA 可高效部署节点、提升监测质量,为海域监测等工程应用提供了一种高质量的解决方案,为相关领域的技术创新和优化部署提供了理论支持和技术保障,具有广泛的实际应用潜力和推广价值。

     

    Abstract: Objectives To address issues in wireless sensor networks for monitoring target sea areas, such as arbitrary deployment methods, low effective coverage, and high coverage redundancy, Fractional-order Chameleon Swarm Algorithm (FCSA) is proposed. Methods First, an improved Circle chaotic map is employed to initialize the population, enhancing both diversity and global distribution. Second, a fractional-order velocity update strategy integrates historical velocity information in the update process, enabling adaptability and agility across different iteration phases and improving global search efficiency. Additionally, a Levy flight mechanism is used to guide individual position updates, thereby further enhancing global search capability and diversity. Results Experimental results demonstrate that, compared with nine algorithms, including CSA, CSA-Circle, CSA-Levy, and RSO, FCSA achieves higher coverage while significantly reducing coverage redundancy. It exhibits superior optimization performance, higher convergence accuracy, and more uniform individual distribution. Conclusions In addressing the static node deployment optimization problem in wireless sensor networks, FCSA effectively enables efficient and rational node distribution, significantly improving coverage and deployment quality, and providing theoretical support for engineering applications such as sea area monitoring.

     

/

返回文章
返回