基于SVR的船舶简化分离型模型水动力系数辨识研究

Hydrodynamic coefficients identification of ship simplified modular model based on support vector regression

  • 摘要:
    目的 为解决船舶分离型(MMG)模型水动力系数辨识存在的共线性和参数漂移问题,提出一种基于支持向量回归(SVR)的三自由度简化分离型模型建模方法。
    方法 首先,在样本数据的基础上提出一种数据预处理策略,以提升样本的有效性;然后,通过Lasso回归算法筛选对模型影响较显著的水动力系数,以减小多重共线性的程度;接着,针对分离型模型推导水动力系数辨识的回归模型,通过SVR进行水动力系数辨识;最后,采用差分法和数据中心化重构回归模型,以削弱参数漂移对水动力辨识误差的影响。
    结果 试验结果显示,水动力系数预报值与数值模拟结果吻合较好,均方根误差(RMSE)和相关系数(CC)的计算结果均在良好范围内。
    结论 通过SVR算法可以成功辨识出分离型模型的水动力导数,辨识得到的水动力系数精度较高,并且所建立的模型具有较好的预报能力和鲁棒性。

     

    Abstract:
    Objectives To address the issue of multicollinearity and parameter drift in the identification of hydrodynamic coefficients in ship separated-type models, this paper proposes a method for modeling simplified three-degree-of-freedom modular models based on support vector regression (SVR).
    Methods Initially, a processing strategy is introduced to enhance the effectiveness of the sample data. Further, Lasso regression is introduced to select the most influential hydrodynamic coefficients and alleviate multicollinearity. Subsequently, a regression model for the identification of hydrodynamic derivatives is derived for the MMG model. A data centralization and differencing method is then employed to reconstruct the regression model, mitigating the impact of parameter drift on hydrodynamic derivative identification errors.
    Results Simulation experiments demonstrate good agreement between the hydrodynamic coefficient forecast values and numerical simulation results. The calculated values of root mean square error (RMSE) and correlation coefficient (CC) fall within a favorable range.
    Conclusions The SVR algorithm successfully identifies the hydrodynamic derivatives of the modular model, the identified hydrodynamic coefficients exhibit high accuracy, and the established model demonstrates good predictive capability and robustness.

     

/

返回文章
返回