不同设计要求下钛合金双层加筋圆柱壳优化设计特性分析

Analysis of optimization characteristics of titanium alloy double layer stiffened cylindrical shell structure under different design requirements

  • 摘要:
    目的 为探究不同长径比和不同计算压力下钛合金双层加筋圆柱壳优化设计方案的特性,建立钛合金双层加筋圆柱壳结构轻量化数学模型。
    方法 基于Matlab建立遗传算法主控程序,采用有限元软件ANSYS进行极限承载能力计算校核,并对比分析不同长径比和不同计算压力下钛合金单、双层加筋圆柱壳优化方案的差异。
    结果 钛合金加筋圆柱壳优化设计存在2个临界计算压力,将优化设计分为3个优化类型,即极限承载能力约束控制优化设计的稳定性约束型、强度约束控制优化设计的强度约束型以及强度和极限承载能力约束共同控制优化设计的共同约束型。长径比越大,临界计算压力越大;在相同的计算压力和长径比下,双层壳优化方案的重量低于单层壳结构;在相同长径比下,双层壳优化设计的临界计算压力小于单层壳。
    结论 研究成果可为钛合金双层加筋圆柱壳优化设计提供参考。

     

    Abstract: :
    Objective In order to explore the characteristics of optimization design schemes of titanium alloy double layer stiffened cylindrical shell structure under different length-to-diameter ratios and different calculation pressure, a mathematical model for lightweight optimization of titanium alloy double layer stiffened cylindrical shell structure was established.
    Methods The main control program of genetic algorithm was established based on Matlab, and the ultimate bearing capacity was calculated and checked by the finite element software ANSYS. The differences of optimization schemes between titanium alloy single layer stiffened cylindrical shell and titanium alloy double layer stiffened cylindrical shell under different length-to-diameter ratios and different calculation pressure were compared and analyzed.
    Results There are two critical calculation pressure in the optimization design of titanium alloy stiffened cylindrical shell, and the optimization design is divided into three optimization types: the stability constraint type of ultimate bearing capacity constraint control optimization design, the strength constraint type of strength constraint control optimization design and the joint constraint type of strength and ultimate bearing capacity constraint joint control optimization design. The larger the length-to-diameter ratio, the larger the critical calculation pressure. Under the same calculation pressure and length-to-diameter ratio, the weight of double layer shell optimization scheme is lighter than that of single layer shell, and the critical calculation pressure of double layer shell optimization design is smaller than single layer shell under the same length-to-diameter ratio.
    Conclusions The research results can provide reference for the optimization design of titanium alloy double layer stiffened cylindrical shell structure.

     

/

返回文章
返回